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Summary A vortex-based model of the quasigeostrophic turbulence is developed, based on the fact that the interactions between
vortex structures dominate the dynamics of the turbulence. Each coherent vortex is modeled by an ellipsoid of uniform potential
vorticity embedded in a 'locally uniform shear field’ induced by other vortices. The equations of motion are derived following the
procedure of Hamiltonian moment reduction. The degree of freedoM witeracting vortices iSN, and even a two-body system

shows chaotic behavior. The validity of the ellipsoidal moment model is assessed by performing direct numerical simulations based on
the CASL-algorithm. It is shown that the model captures the merger of co-rotating vortices well but that it fails to predict the robustness
of a counter-rotating vortex pair.

N INTERACTING ELLIPSOIDAL VORTICES - ELLIPSOIDAL MOMENT MODEL -

We consider the motion @V interacting ellipsoidal vortices of uniform potential vorticigy : ¢ = 1,2,---, N, whose

center of vorticity is located dtX;, Y;, Z;). Here, thez-axis denotes the vertical axis. The potential vortigitys uniform

inside thei-th ellipsoid, whose principal axes lengths arg;, v;, respectively. Their orientations are specified by the
Euler anglesy;, 0;, ;. The state (location, shape, and orientation) of each ellipsoid is also specified by the values of 10
moments up to the second order. [1] The equations of motion are expressed, using a Poisson bracket of the cosymplectic
matrix of the Lie-Poisson form. The Hamiltonian of the system is expressed as a summation of the self-energy of each
vortex and the mutual interaction energy. We introduce an approximation in order to express the mutual interaction, by
using only the moments up to the second order. The obtained equations of motion are similar to those of Méacham
al.,[2] in which we have summed up the background vorticity, the strain field, and the vertical shear induced at the center
of thei—th ellipsoidal vortex by thej—th virtual point vortex'.

This Hamiltonian dynamical system has several invariants, of which three are Casimirs; i.e., the total vorticity (vortex
volume) of theith ellipsoidI;, the z—coordinate of the center of thh ellipsoid Z;, and the vortex-height of thih

ellipsoid. The degree of freedom of each ellipsoid is reduced to three (six independent variables). There are other
conserved quantities; i.e., the total enefythe vorticity center of the whole systefhand(@, and the angular momentum

L. Here,H, P? + @2, L are Poisson-commutable invariants. Even a two-ellipsoids system is not integrable, because it
has 'six degrees of freedom’.

MERGER OF CO-ROTATING VORTICES

Miyazaki et al.[1] investigated the interaction of two co-rotating spheroidal vortices of the same shape, by adjusting
the initial distance between the vortices. When two vortices were placed close enough initially, the motion became
chaotic, the horizontal distande(t) = /(X2 — X1)2 + (Y2 — ¥7)2 between two vortices oscillated irregularly with

a large amplitude, and a 'merger’ of vortices occurred. By defining the 'merger’ to be a phenomenon in which the
following two conditions were satisfied (i.e., the vertical overlg,(— Z1| < zh; + zhs) and the horizontal overlap

D) < Vll/3 + V21/3) with Vll’é?’ denoting the "average radii’), the threshold of the initial distance leading to the merger

was determined. The threshold of the merger was almost the same as that of the chaotic motions. Figure 1 shows the
region of the initial position of the second vortéx= X(0) — X1(0),h = Z, — Z;), relative to the first vortex, for the

case ofa; 2 = 812 = 0.3162,~, 2 = 1. The shadowed region represents the 'defined’ merger region. Starting from the
region inside the broken curve (model-threshold), a merger according to the above definition occurs over the course of
time.

We performed numerical simulations (CASL) in order to assess the validity of predictions based on the model. The
open squares in Fig.1 indicate the cases in which the vortices do not merge. The open circles denote the cases in which
the merger is observed. The open triangles indicate the cases of intermediate behavior. The vortices merge once, then
separate again into two vortices. This occurs because the transiently created vortex is unstable. The boundaries between
three zones are represented by two solid lines. The ellipsoidal vortex model works well for the/regians (large

vertical off-set). The model, however, over-estimates the critical distance in the fegidn5; i.e., when the vortices are

placed on nearly the same horizontal plane.

COUNTER-ROTATING VORTEX PAIR

Next, we investigate the motion of a counter-rotating pair of two vortices of the same shape, a so-called 'dipole’.[3] Here a
'dipole’ means a counter-rotating pair of ellipsoids with vanishing total vorticity. They are vertically off-set. We consider
prolate spheroids withy; » = 81 2 = 0.3162,~, 2 = 1. Both spheroids are vertically standing at the initial time. The
initial vortices are placed on the— 2 plane and off-set vertically. The model predicts three patterns, depicted in Fig.2, as



follows: (1) stable translation in the positiyedirection, (2) translation in the negatiyadirection with large precessions,

and (3) singular behavior (tilting down) of both vortices. In region (1), the motion is doubly time-periodic with a main
period of 46.2 and the secondary period of 6.18. The translation velocity in the region (1) is positive. In region (2), both
the inclination and orientation change non-periodically. In region (3), the most striking thing occurs; i.e., both vortices
are stretched infinitely. The gradielifa of the boundary-line between the regions (2) and (3) is abdlit The tilting

pair translates along thg axis in the negative direction. Because of this singular behavior, the numerical computation
of the ellipsoidal moment model stops in region (3), which is a serious drawback of the ellipsoidal moment model. It is
noteworthy that no singular behavior is observed in the symmetric interactions between fatter vortices,stich>as
about2/3.
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We performed numerical computations (CASL) corresponding to the above three categories. In case (1), both vortices
precess slightly, retaining the ellipsoidal forms, and the energy and enstrophy are conserved. In cases (2) and (3), the
vortices tilt largely in the early stage of computation. Later, the vortices emit filaments from the top and bottom and
the inclination angles decrease after flamentation (dancing). The singular behavior predicted by the ellipsoidal moment
model is not observed; it appears to be circumvented via the dissipative filamentation.

In Fig.3, the nonlinear behavior is summarized as a pattern map ifutthg plane. Open circles show the cases of
stable translation without dissipation, and crosses represent the cases of vortex-dancing with considerable filamentation.
Squares represent the cases in which many satellites remain after filamentation. The solid lines are thresholds predicted
by the ellipsoidal moment model. We can see that practically, the model works if the vortices are not off-setted vertically
(h < 1), for it captures the dissipative processes by giving alarms; i.e., by showing infinite stretching or large precession of
one or both of the contour-rotating vortices. When the vortices are largely off-sktted ), non-ellipsoidal deformation
becomes important, even if the ellipsoidal moment model predicts no singular behavior.

REFINEMENT OF THE ELLIPSOIDAL MOMENT MODEL

Recently, Dritschel and his group proposed an accurate model, [4] in which an ellipsoid is represented by seven point
vortices in computing the induced flow field, not by a single point vortex as it is in the ellipsoidal moment model. We
have refined the Wire-model (slender limit of the ellipsoidal moment model) following their idea; i.e., by representing

a wire-vortex by several point vortices in the integration of the mutual energy. The wire-vortex becomes robuster as the
number of point vortices increases. A reasonable choise is 'three’, considering both the accuracy and the computaional
time. According to the refined model, the critical merger-distance between co-rotating vortices is also modified in favor
of the numerical results.

CONCLUSIONS

A vortex-based model of quasigeostrophic turbulence is developed. The validity (or limitation) of the model is assessed
by performing direct numerical simulations based on the CASL-algorithm. The model captures the merger of co-rotating
vortices well, but it fails to predict the robustness of a counter-rotating vortex pair. A possible way to refine the model is
suggested. We have extracted a workable reset-rule after dissipative events, which enables us to perform 'quasi-turbulence
simulations’ based on the refined ellipsoidal moment model.
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