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Summary Thermal convection in rapidly rotating, self-gravitating Boussinesq fluid spherical systems is a classical problem and has
important applications for many geophysical and astrophysical problems. The convection problem is characterized by the three physical
parameters, the Rayleigh numberR, the Prandtl numberPr and the Ekman numberE. This paper reports a new convection theory in
rapidly rotating spherical systems valid forE ¿ 1 and0 ≤ Pr < ∞. The new theory units the two previously disjointed subjects in
rotating fluids: inertial waves and thermal convection. Both linear and nonlinear properties of the problem will be discussed.

INTRODUCTION

Thermal convection in rapidly rotating, self-gravitating Boussinesq fluid spherical systems driven by a uniform distribu-
tion of heat sources has been extensively studied. There are two major reasons why much attention has been attracted to
this problem: it has important applications for many geophysical and astrophysical problems and it provides a fundamental
understanding of general dynamics of rotating fluids.
The classical convection problem is characterized by the three physical parameters, the Rayleigh numberR, the Prandtl
numberPr and the Ekman numberE. In their seminar papers, Roberts (1968) and Busse (1970) established a local
asymptotic theory for the onset of convection in the limitsE → 0 andPr/E → ∞. The Roberts-Roberts local theory
assumed the following asymptotic laws
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where(s, φ, z) are cylindrical polar coordinates with the rotation axis in thez-axis. Progress on the asymptotic theory in
the limitsE → 0 andPr/E → ∞ for the onset of convection was made by Jones et al. (2000) (see also Soward, 1977),
who found the asymptotic solution that produces a correct critical Rayleigh number. The central issue in their analysis is
to extend the local solution onto the complexs-plan in which the phase mixing vanishes.
A different asymptotic theory for the onset of convection in a rapidly rotating sphere was developed by Zhang (1994) for
the limitsE → 0 andPr/E → 0. It was shown that convective motions are at leading order represented by single inertial
wave that has the simplest structure along the axis of rotation. Buoyancy forces appear at next order to drive the inertial
wave against the weak effects of viscous damping. It was recognized that the localized convective motion spreads out
with decreasingPr, obeying the following asymptotic laws
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In this limit, an analytical expression for the complete convection solution in closed form was obtained (Zhang, 1994).
Our new theory attempts to study the solutions of convection for0 ≤ Pr < ∞ atE ¿ 1.

A NEW CONVECTION THEORY

Weakly nonlinear solutions of convection can be expressed as

u = ε(u0 + u∗0) +
ε2

E
U(s)φ̂ + ... (3)

whereε is the amplitude of convection,u is the flow velocity,U(s) is the nonlinear mean flow, andF ∗ denotes the
complex conjugate ofF . The velocity boundary conditions assumed in this paper are stress-free and impenetrable, which
give

∂(φ̂ · u0/r)
∂r

=
∂(θ̂ · u0/r)

∂r
= r̂ · u = 0 (4)

at the outer bounding spherical surfaces. Our new theory for the convection problem is based on the following three
hypotheses.
The first hypothesis: For an arbitrary small but fixed Ekman numberE ¿ 1, the localized convection spreads out quickly
in both thes− andφ−directions with decreasingPr. We thus assume that for0 ≤ Pr < ∞ at an arbitrary small but fixed
Ekman numberE ¿ 1,
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Figure 1. Contours of the radial flow in the equatorial plane. Left panel is the solution derived from the new theory and the solution on
right panel is obtained from the fully three dimensional numerical simulations.

A significant consequence is that we must solve partial differential equations. Note that the local theory is concerned with
a second-order ordinary differential equation inz.
The second hypothesis: For0 ≤ Pr < ∞ at an arbitrary small but fixed Ekman numberE, we assume that there exists a
flow, ũ0, that is non-zero only in the Ekman boundary layer on the bounding spherical surface such that

r · ∇
[ r
r2
× (u0 + ũ0)

]
= 0. (6)

The third hypothesis: For an arbitrary small but fixed Ekman numberE, we assume that the leading-order velocity of
convection can be expressed in the form

u0 =
∑

N

[
UN (UN + ŨN )

]
ei2σt (7)

whereσ is the half-frequency of thermal convection,ŨN ) is the boundary layer flow in the Ekman layer,UN are nearly
geostrophic inertial wave (NGIW) modes for which explicit analytical expressions are now available (Zhang et al., 2001,
see also Zhang et al., 2004).
Our analysis demonstrated that agreement between the results obtained from the new theory and fully numerical simula-
tions is excellent. For example, we obtain the critical Rayleigh numberR = 263.5 from the new theory while the fully
numerical simulation gives rise toR = 264.56 for E = 5 × 10−5. Based on the linear solution of the problem, we are
able to derive an analytic expression for the differential rotation generated by nonlinear interactions of the waves.

CONCLUSION

We show that leading-order convection in a rapidly rotating sphere is either single NGIW mode or a number of coupled
NGIW modes modified by viscosity and sustained by thermal buoyancy. The new convection theory unites two pre-
viously disjointed subjects in rotating fluids: inertial wave theory and convection theory. This unification furthers our
understanding of rotating fluids and opens an exciting line of the future research.
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