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Summary A new model for turbulent flows with stable stratification is presented. This model belongs in the class of the quasi-Gaussian
closures; its parameters are calculated based upon a self-consistent recursive procedure of small-scale modes elimination starting at the
Kolmogorov scalekd. The model includes both vertical and horizontal eddy viscosities and diffusivities thus explicitly recognizing
the anisotropy induced by stable stratification. There are significant differences in the behavior of these turbulent exchange coefficients
with increasing stratification. Generally, the vertical coefficients are suppressed while their horizontal counterparts are enhanced. The
model accounts for the combined effect of turbulence and internal waves on the exchange coefficients. A dispersion relation for internal
waves in the presence of turbulence is derived. A threshold criterion for the wave generation in the presence of turbulent scrambling
is obtained. The new model can be used to derive subgrid-scale parameterizations for LES and eddy viscosities and diffusivities for
RANS models. The latter approach is used to develop a newK − ε model which is tested in simulations of the atmospheric stable
boundary layer (SBL) over sea ice. The new model performs well in both moderately and strongly stratified SBLs.

THE SPECTRAL MODEL

The spectral closure theory is developed for a fully three-dimensional, incompressible, turbulent flow field with imposed
homogeneous, vertical, stable temperature gradient; the flow is governed by the momentum, temperature and continuity
equations in Boussinesq approximation,
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whereu andθ are the fluctuating velocity and the fluctuating potential temperature, respectively; P is the pressure,ρ is the
constant reference density,ν0 andκ0 are the molecular viscosity and diffusivity, respectively,α is the thermal expansion
coefficient,g is the acceleration due to gravity directed downwards,dΘ

dz
is the mean potential temperature gradient, andf0

represents a large-scale external energy source customarily used in spectral theories of turbulence; it maintains turbulence
in statistically steady state and may originate from large-scale shear instabilities. According to Kolmogorov theory of
turbulence, the details of this forcing are immaterial in statistical description; its net effect is communicated to the fluid
via a single integral parameter, the rate of the energy injection at large scales. Due to strong nonlinear interactions, the
external forcing excites all Fourier modes down to the dissipative scalekd. The modes exert indiscriminant, random
agitation upon each other which manifests as a stochasticmodal forcing f . This forcing is used to replace the non-linear
equations (1), (2) by modal stochastic equations

ui(k, ω) = Gij(k, ω)fj(k, ω), (4)

θ(k, ω) = −dΘ
dz

u3(k, ω)Gθ(k, ω), (5)

also known as the Langevin equations. Here,Gij(k, ω) andGθ(k, ω) are the velocity and the temperature Green func-
tions, respectively. They include terms accounting for the damping of a given mode by all other modes due to nonlinear
interactions. Eventually, these terms are associated withk-dependent viscosities and diffusivities [1, 2]. The Langevin
equations can be viewed as a device that facilitates the replacement of the original nonlinear Navier-Stokes and tempera-
ture equations by a system of linear, forced, stochastic equations in which the energy budget is systematically adjusted for
every Fourier mode. In more rigorous interpretation, the replacement of the fully nonlinear Navier-Stokes equations by
the Langevin equations represents amapping of the original flow field onto a quasi-Gaussian fieldf (k, ω) under the con-
straints of incompressibility and conservation of the modal energy flux. In the case of neutral stratification, this approach
recovers some basic features of isotropic homogeneous turbulence including the Kolmogorov spectrum [1].



Figure 1. Normalized horizontal and vertical eddy viscosities and diffusivities as functions ofk/kO .

The parameters of the eddy damping are calculated using a systematic algorithm of successive averaging over small shells
of velocity and temperature modes. The algorithm consists of computation of small increments to the vertical and the
horizontal viscosities and diffusivities generated by the averaging over small shells of the velocity and the temperature
modes using the Langevin equations (4) and (5). It results in a system of four coupled ODEs for turbulent viscosities and
diffusivities,

d

dk
(νh, νz, κh, κz) = − ε

k5
R1,2,3,4(νh, νz, κh, κz), (6)

whereε is the rate of the viscous dissipation;νh andνz are the horizontal and the vertical eddy viscosities, respectively;
κh andκz are the horizontal and the vertical eddy diffusivities, respectively, andR1 throughR4 are algebraic expressions.
The procedure takes account of the combined effect of turbulence and internal waves. The computation starts at the
Kolmogorov scalekd where the initial values of the vertical and the horizontal viscosities and diffusivities are equal to
their respective molecular valuesνo andκ0 and is continued to an arbitrary wave numberk < kd. The system (6) can
only be solved numerically. Solutions obtained for the non-dimensional variablesνh/νiso, νz/νiso, κh/νiso andκz/νiso

are presented in Fig. 1 as functions of the ratiok/kO, wherekO = (N3/ε)1/2 is the Ozmidov wave number andνiso is
the eddy viscosity for neutral stratification (N = 0) obtained with the sameε.

IMPLEMENTATION OF THE SPECTRAL RESULTS IN K − ε MODELING

The process of small scales elimination can be extended to the largest scales of the system, i.e., the integral length scale,
k−1

L . This approach is analogous to the Reynolds averaging and the resulting equations represent a sort of a RANS model.
We have usedνz andκz to develop aK − ε model based upon the spectral theory rather than the Reynolds stress closure.
In simulations of SBLs, it was found necessary to generalize the formulation of theε-equation given in [3] to include the
effect of stratification in addition to the rotation,

C1 = C0
1 + CfRo−1

∗ − CNFr−1
∗ , (7)

whereRo∗ = u∗/|f |L, Fr∗ = u∗/NL, u∗ is the friction velocity,f is the Coriolis parameter,C0
1 is the standard

coefficient equal to 1.44,L = 0.16K3/2/ε is the turbulence macroscale used in theK − ε modeling,Cf = 111 and
CN = 0.58 are empirical constants. The newK − ε model has been tested in simulations of ABL over sea ice and
compared with the data from Beaufort Arctic Storms Experiment (BASE) and LES [4]. The results of the simulations
with the newK−ε model are in good agreement with the LES for both cases of the moderate and strong stable stratification
and provide significant improvement over the standardK − ε model.
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