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Summary Marangoni convection is investigated in cylindrical column using a liquid with Pr=4. The present results are targeting on the 
study of the non-linear characteristics of the flow under zero-gravity conditions. The transitions to periodic, quasi-periodic and 
chaotic flows are investigated numerically. The 3-D oscillatory flow is a result of a supercritical Hopf bifurcation and the periodic 
orbit represents the unique stable solution near the onset of the instability. The non-linear system admits regime of bi-stability. A 
traveling wave with azimuthal wave number m=2 bifurcates from the basic branch of axisymmetric steady state; this branch remains 
stable in the considered range of parameters. A second stable branch with azimuthal wave number m=3 appears for higher Marangoni 
numbers and reveals other periodic, quasi-periodic and chaotic properties. The transitions between the two stable orbits with m = 2 
and m = 3 have never been observed. 
 

INTRODUCTION 
An increasing number of experimental studies in a half-zone model, which corresponds to floating zone (FZ) techniques 
of crystal growth, indicates that convection in melt should be turbulent, e.g. see Hurle1. Nevertheless, because of great 
complexity of the turbulent flows, all numerical simulations of transport processes were performed assuming laminar flow 
in the liquid phase. Apart of that, from the more physical side, the hydrodynamics effects in the half-zone model is of 
basic interest for the dynamics occurring in the system, as it is an excellent example of a dissipative dynamical system. 
Therefore, the present study is aimed at the investigation of time-dependent convective flows in the strongly 
supercritical regimes.  
 
 FORMULATION OF THE PROBLEM 

 
A liquid bridge consists of a fluid volume, which is held between two differentially heated horizontal flat concentric disks 
of radii R, separated by a distance d. The temperatures Th and Tc (Th  > Tc) are prescribed at the upper and lower solid-
liquid interfaces respectively, yielding a temperature difference ∆T = Th – Tc. The surface tension and kinematic viscosity 
are taken as linear functions of temperature.  Throughout this parametric study the Prandtl number and the aspect ratio Γ 
= d/R are kept constant; Pr=4, Gr=0 and Γ = 1. Then the only one parameter, the Marangoni number, which is 
proportional to the temperature difference between the rods, controls the flow.  
The governing Navier-Stokes, energy and continuity equations are written in non-dimensional primitive-variable 
formulation in cylindrical co-ordinate system, see details in Shevtsova et al2. The three-dimensional, fully non-linear 
governing equations were solved in a primitive-variable form on a staggered stretched mesh.  These equations were 
integrated over non-overlapping finite volumes. The computation of the velocity field at each time step was carried out 
with the projection method. A combination of fast Fourier transform in the azimuthal direction and of an implicit ADI 
method in the others was applied for calculating the Poisson equation for pressure.   
 

RESULTS AND DISCUSSION 
 
 The different spatiotemporal patterns of the thermocapillary flow are numerically analyzed, beginning from the onset of 
instability up to appearance of  non-periodic flow and further on. The calculations were performed  up to ε =(∆T -∆T cr)/ 
∆Tcr ≈ 8.5. For the small temperature difference between supporting disks the thermocapillary flow is two-dimensional 
(i.e. invariant in the azimuthal direction), steady and has a toroidal-like structure.  The 3-D oscillatory flow is a result of a 
supercritical Hopf bifurcation and the periodic orbit (traveling wave with azimuthal wave number m = 2 ) represents the 
unique stable solution near the onset of the instability, Macr =2520.  This periodic branch remains stable in the 
considered range of parameters. A second branch of solution with azimuthal wave number m=3 appears for higher 
Marangoni numbers, Macr

(2)=3240, and reveals other periodic, quasi-periodic and chaotic properties.  
Beyond this second bifurcation point, Ma >3240, the system admits the coexistence of two stable oscillatory solutions 
with two different wave numbers, m = 2 and m = 3. The transitions between the two stable orbits with m = 2 and m = 3 
have never been observed. Notice, that these two solutions do not represent the different modes of the linear problem; 
on the contrary, they are both the results of the solution of the full non-linear problem. The final solution depends on the 
initially chosen wave number guess. 
 
The symmetry of the final solution keeps the memory of the initial state of the system for Ma> Macr

(2)=3240. Namely, 
taking an initial guess with m = 1, 2, 4, 6 etc. symmetries, after some transient time the system will arrive to m = 2 traveling 
wave (TW) solution.  Otherwise, all the odd basic symmetries m = 3, 5, 7 (except m = 1) give m = 3 traveling wave as final 
state of the system. 
 



For the m = 2 solution, the critical mode at the first bifurcation, the flow remains strictly time-periodic for ε < 8.5.  
 
 The m=3 flow pattern undergoes a transition from the periodic to a weakly chaotic flow via quasi-periodic and period-
doubling states.   This study is extension of recently published results, see ref.3, where all above-mentioned temporal 
transitions have been analysed. Here the special attention is paid to the investigation of the spatial structure of the flow 
with increasing of Marangoni number. The results of spatial and temporal Fourier analysis are shown in Fig.1 and Fig.2 
for Ma= 18000, while temporal chaos is progressing.   
 
 

 
 

Fig.1. Spatial Fourier spectrum, Pr=4, Ma=18000. 
 

 

 
 

Fig.2. Temporal Fourier spectrum, Pr=4, Ma=18000. 
 
To distinguish numerically the chaotic and non-chaotic (aperiodic) behaviour is a delicate problem. There are several 
ways to recognize chaotic behaviour features in oscillatory systems, such as analysing their Poincare (return) maps, 
phase space trajectories and power spectra. One of the fundamental characteristics of a chaotic state is its sensitivity to 
the initial state. If the same system starts from two different but close initial conditions (initial guesses in our numerics) 
their dynamical trajectories would diverge on the attractor very quickly. The distance between two close trajectories has 
to grow exponentially with time.  
Of course, the simulation of the linear equations obtained by linearization of the Navier-Stokes equations around the 
non-linear solution would give the exponential law more directly. Nevertheless, very small disturbances should evolve in 
the exponential way even if one simulates the original Navier-Stokes equations. For the present system, the difference 
between original and different disturbed solutions were carefully analyzed to demonstrate that temporal aperiodic flow is 
chaotic. 

CONCLUSIONS 
 

The development of Marangoni convection in liquid bridge has been studied in 3D numerical model. To the best of our 
knowledge, the bifurcation of thermocapillary flow in a liquid bridge in the strongly supercritical regime has not yet been 
mapped out.  Tracing the route to temporal chaos, two attractors corresponding to traveling waves with different wave 
numbers have been found. One of the attractors exhibits temporal chaotic behaviour, while the other one is strictly 
periodic. The spatial structure of the flow does not reveal chaotic features.  
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