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Summary On macro-scales the liquid-gas interface is classically modelled by a surface of discontinuity. However, on micro-scales,
there is a transition region, where the properties are changed continuously. This makes reasonable to describe the two-phase system,
including the interface, within a hydrodynamic approach. In this approach, the new term proportional to density gradient is added to
free energy. Near the critical point, where there is no strong difference between a liquid and its vapour, the gradient approach is quite
reasonable. Based on this approach we considered the formation of nucleusin a closed cavity and studied its stability. The results are
found to be in a good agreement with the classical Laplace approach, while considering the states far from the critical point. In near-
critical region, the results are proved surprising. It is shown that within the framework of one-dimensional problem the system
remains single-phase and uniform even for negative values of mechanical compressibility.

STATEMENT OF THE PROBLEM

We applied the gradient theory [1] for consderation of nucleus formation in a closed cavity, considering a sphericd inclusonin a
spherical container. Thefree energy of fluid in this approach is supposed to be afunction of dengity gradient,
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where f isvolumetric freeenergy, f ° isclassical part, and | iscapillary coefficient.
Thefree energy of aspherica nucleusisthen asfollows
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where k isLagrangian multiplier responsible for condition that system is closed.
In equilibrium the functiona of free energy should be minima. Minimum of free energy is determined using the gradient method. The

following equation is postul ated:
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Here t is not redl physicd time, but just an auxiliary varigble. However, the steedy solutions of this equation correspond to the
extremum of functiond F .
Thisresultsin the following problem for density profile;
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We use ere the following units of length and dengity: L =&, (container
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]/ 3 (1 Eg) | &, a,=apflr./a is dimensonless radius of a contaner, and
A q= m/([r ]L3) is average density of asystem.
i ]'/ 3 Uniform solution of the problem is trivid r =q. In region | (fig. 1)
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Fig. 1. Regions of existence for different types of

solutions unstable with respect to small disturbances, and develop to non-uniform

(nucleus-type) solutions. Out of this region (in region I1), uniform solutions
are stable with respect to smal disturbances, however, they unstable in respect to finite perturbations. As a result, non-uniform
solutions can dso redisein thisregion.

Isothermal compressibility determined by expression (Tip/1ir ), =- 1+39° is negative inside region 111 and a physical system
cannot exist here in a uniform state [2]. Introduction of capillary term into free energy results in surprising effect, in a sufficiently



small container the system can be uniform even if (ip/flr ), < 0. This critical radius is very small far from the critical pant and

cannot be congdered within a hydrodynamic approach. Near the criticd point this radius can be not smal since éél) ~]/1[(-T) ,
i.e,dvergeif T ® O.

NUMERICAL RESULTS

The typical dendty profiles obtained by finite-difference method are given in fig. 2. The thickness of atranstiona layer, the so-cdled
capillary length, equals d, =1/a, = Ya,x(Ir, /a)”.
Radius of nucleus and coefficient of surface tension were cdculated with the help of the following effective formulas:
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Dependences of nudleus radius on average dendity are giveninfig. 3.
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Fig. 2. Typical density profiles. q =0.1, a, changesfrom 4 | Fig. 3. Dependence of nucleus radius on average density. Thick
(uniform solution) to 100 (stepwise solution) line, a,= 3/(1+q ) / 2; the curves are plotted for
a, =20,10,7,5,4.7 (from top to bottom)

CONCLUSION

The gradient gpproach is convenient to study the fluid behaviour, since the same system of equations is sufficient to find the flows
throughout the two-phase region; the phase transitions, shape and evolution of phase interface are solutions of this system [3]. This
description is particularly worth near the critica point where the gradient gpproach is more reasonable than the classical Laplace
theory.

The problem considered was just a preliminary stage of the investigation with the objective in studying the hydrodynamics of near
critical two-phase media

The results obtained are in a good agreement with the classical approach for the states far from the critical point, and for large
containers and nuclei. In near critica region the results are intriguing; system can be uniform even for negative values of the derivative

(p/1rr ), , which is absolutely impossible within the classical approach.
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