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We illustrate the convenience of a long-lasting microgravity environment for studying flows of
granular materials with and without gas interaction. We consider collisional granular flows of nearly
elastic spheres featuring a single constituent or binary mixtures in various bounded geometries.
We review governing equations for these flows, illustrate their solutions and compare them with
numerical simulations and data from microgravity experiments.
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I. EXTENDED ABSTRACT

The talk illustrates the convenience of a long-lasting
microgravity environment for studying flows of granular
materials with and without gas interaction.

We begin by considering collisional flows of nearly
elastic grains featuring a single constituent of identical
spheres or mixtures of two kinds of spheres that differ by
mass or size at Stokes numbers large enough for the gas
to play a negligible role.

At such high Stokes numbers, we carry out experiments
and numerical simulations in two shear cells with a rect-
angular cross-section bounded by two flat walls and mov-
ing boundaries on which cylindrical bumps are affixed.
One of the cells is shaped as a race track. The other is
axisymmetric.

We outline the equations of the kinetic theory for the
conservation of mass, momentum, fluctuation energy and
species concentration in the granular phase [1] [2] [3].
We illustrate their solutions for shear flows in rectilinear
or axisymmetric rectangular channels with or without
a body force. We show that proper boundary condi-
tions yield numerical solutions in good agreement with
molecular dynamical simulations and with data from ex-
periments carried out on NASA’s KC-135 microgravity
aircraft. [4]

Next, we describe future microgravity experiments
with bounded shear flows of agitated, homogeneous, in-
elastic solid spheres colliding in a gas in the axisymmet-
ric shear cell at finite particle Reynolds numbers, vol-

ume fractions between 0.05 and 0.4, and Stokes numbers
large enough for collisions to determine the velocity dis-
tribution of the spheres. We briefly outline a continuum
theory in which constitutive relations and boundary con-
ditions for the granular phase are derived from the ki-
netic theory, and in which the gas contributes a mean
drag force to the momentum of the grains and a viscous
dissipation term to their fluctuation energy [5]. The the-
ory underscores the role played by the walls in the bal-
ances of momenta and fluctuation energy, and predicts
variations of volume fraction, mean and fluctuation ve-
locities between the walls. We employ it to determine a
set of experimental conditions suitable for recording the
mean drag force and the viscous dissipation. Finally, we
compare predictions of the theory to the recent Lattice-
Boltzmann simulations of Verberg and Koch [6].
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