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Summary The considered energy-based approach can appear helpful in the field of nanomechanics filling the gap between atomistic 
calculations and continuum mechanics modelling of the behaviour of different kinds of crystalline nanostructures. We propose to 
calculate the critical energy of pertinent proper states from quantum mechanical theory of nanostructures. The quantum 
mechanical model for an ideal single crystal of Cu is studied and the comparison with the results obtained for Al crystal 
is made. 
Energy-based approach to limit states – the Rychlewski criterion 
An energy-based approach to limit states in elastic solids of arbitrary anisotropy was developed by Rychlewski [1]. The 
Rychlewski limit condition is based on the theory of proper elastic states and the concept of energy orthogonal stress 
states, which make it possible to decompose additively the elastic energy density stored in an anisotropic body into not 
more than six disjoint parts. According to our opinion, the proposed approach can appear also helpful in the field of 
nanomechanics filling the gap between atomistic calculations and continuum mechanics modelling of the behaviour of 
different kinds of crystalline nanostructures [2, 3]. Under the limit state in nanostructures, we can understand the limit 
of linear elastic behaviour; although the other interpretations of the limit state are also possible. The energy-based 
criterion is formulated in terms of elastic strain states:  
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where p1 ,...,λλ  are the Kelvin elastic moduli corresponding to the proper elastic states of the elastic stiffness tensor S , 
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ratio of the accumulated elastic energy of the proper state to the critical one. The crucial point for the applications of the 
energy-based limit condition is to know the critical values of energy. They can be determined experimentally. However, 
it is difficult to measure it experimentally in the nano-scale. Therefore, we propose to calculate the critical energy of 
pertinent proper states from quantum mechanical theory of nanostructures. The analysis is confined to the cubic 
crystals. In such a case, three elastic proper states exist. They correspond to: a uniform expansion of a cube, equal 
contraction and elongation, respectively, along two cube edges, and change of the angle between the respective two 
edges of the cube. 
The quantum mechanical model for Cu crystal 
The quantum mechanical model for an ideal single crystal of Copper is studied.  The assumed Born-Oppenheimer 
approximation enables the application of Bravais lattice to model the deformation of the crystal. Using the Wigner-Seitz 
cellular method, Fig.1, we replicate the radial density of the charge distribution calculated with the application of the 
Hatree method for a single Cu+ ion, what results in the charge distribution for the crystal shown in Fig.2.   
 
        
 
 
 
 
 
 
 
 
 
 
 
  

Applying the calculated radial density of the charge distribution and using the Slater method [4], the structure of the s, d, f 
and p energy bands was calculated, Fig.3. The first qualitative analysis of the band structure was made by Krutter [5], 
whereas our numerical results make a basis for the calculations of the electron energy in deformed crystal. The energy 
bands are parameterised by the half distance “p” between the central ion and one of its nearest neighbours, cf. Fig.1. The 
parameter “p” is the controlling variable of the uniform extension of the crystal. The increase of the variable “p” produces 

Fig.1. Wigner-Seitz cell of Cu single crystal 

 
Fig.2. The radial density of the charge distribution  
in the plane marked in Fig.1 



the gradual transition of the energy bands into the energy level. The particular interpretation has the transition of the 
energy band s into the energy level, which corresponds to the hypothetical disintegration of the crystal into the separate 
atoms, cf. Fig. 4.  
 
 

 
 

                                                                                                    
 
 
 
 

 
 
 
 
 
 
Calculation of the limit energy 
 
 
 
The internal energy of the crystal volume )p(Ω  confined in the expanding Wigner-Seitz cell was calculated from (2)1, 
where the internal energy is the sum of  the repulsive energy of the Cu11+ ions and the energy of  the electrons of the 
energy bands s and d. 
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Conclusions 
The similar identification of the energy-based Rychlewski criterion can be made for other crystals. The Al crystal was 
studied for the comparison. It posses the same symmetry as Cu, but has the different electronic structure, as for Al 
belongs to sp-valent metals. Therefore, the three critical energies are calculated, but by using the approximation of 
Nearly Free Electrons (cf. e.g. [6]). If we consider the relations between the critical energies, we can observe that it is 
the electronic structure that plays the crucial role in the strength distribution in the crystal of the same symmetry. 
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Fig.4. The calculated radial density of the charge distribution: 
a) in the equilibrium state, b) in the state of hypothetical 
disintegration of the crystal into the separate atoms.

Fig.3. The calculated band structure of Cu crystal, 
          4127.2peq = A.U. 

a) b) 

Fig.5. The Wigner-Seitz cell deformed 
according to the second proper state. 

The similar analysis can be made for the deformation of the 
Wigner-Seitz cell according to the second proper state illustrated in 
Fig. 5. In such a case, the distance between the central ion and the 
neighbouring ones, marked in red, diminishes. This requires taking 
into account in the calculation of energy band structure the 
ellipsoidal charge distribution. The structure of the equations (2) 
leading to the calculation of the critical energy cr

2Φ remains the 
same. For the third proper state, related with the change of the angle 
between the respective two edges of the cube, the similar algorithm 
of the calculation of the critical energy cr

3Φ holds. 
 


