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In recent years, rapid development of nanotechnologies led to the necessity of constructing adequate phys-
ical models that make it possible to describe physico-mechanical properties of objects with a nanometersize
(nanosize) scale. The majority of existing models of such a kind adopt that basic mechanical characteristics
of nanosizc objects correspond to thosc obtained in macroscopic cxperiments. Howcever, when dealing with
structurcs containing only scveral atomic layers, the discrepancy arises between the evident discretencss of an
object under study and a continual method of its description. The inconsistency of values of elastic moduli,
which were obtained in microscale and macroscale experiments, was noted by many researchers. The solution to
an equivalent continual problem allows the Poisson’s ratio and Young modulus for the coating to be determined
from such experiments. However, the values of elastic characteristics measured by this method exhibit a sub-
stantial inconsistency by their macroscopic values for the same material. The aim of the presented paper is to
investigate theoretically the scale cffect for the Poisson’s ratio, Young modulus and the bending stiffness of thin
nanocrystalline structures. The interest to these problems is connected with the necessity of investigation of the
mechanical deformation of nanotube devices, which are used intensively in the recent years in nanotechnology
developments. Engineering materials and structures at the nanoscale are expected to play a key role in the
production of the next generation of clectronic devices such as single clectron transistors, terabit memorics,
quantum computers, and etc.

Poisson’s ratio and Young modulus determination. We consider a twodimensional single crystal
shown in the Figure 1. The crystal possesses an infinite length along the = direction and N > 2 atomic layers in
the direction. Each atom interacts only with its nearest neighbors, as is shown in the Figure 1. Constant tensile
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Figure 1:

forces () are applied to atoms located at crystal ends. The deformed singlecrystal state under consideration
is completely determined by the distance a between neighboring atoms in each layer and by the interlayer
distance h. Let us note, that the crystal thickness H (its extension along the y direction), in principle, cannot
be determined unambiguously. For example, if we assume that the crystal thickness is equal to the distance
between atomic layers lying on opposite crystal ends (see Figure 1), then, in this case, H = (N — 1)h. On
the other hand, it is quite reasonable to determine the crystal thickness as a product of the number of layers
by the thickness of a single layer, which results in the formula H = Nh. Therefore, we denote H = N,h,
N —1< N, <N, where N, is the quantity reflecting an arbitrariness in the determination of H. The crystal
under consideration is anisotropic. We recall that the infinite crystal with the HCP crystal lattice is isotropic



and, hence, the anisotropy indicated is a manifestation of the scale factor. Furthermore, we denote
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Here, 11 and E; are the Poisson’s ratio and Young modulus for tension along the x axis; the quantities v» and
E5 correspond to tension along the y axis. Using relationships (1) and equations of equilibrium of the crystal,
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where, v, and E, are values of the Poisson’s ratio and Young modulus, which correspond to the infinite crystal.
Based on the studies performed, we can list the basic properties intrinsic to nanocrystals. 1. For the elastic
moduli of a nanocrystal, only a possible interval of values is determined. This is associated with the impossibility
of unambiguously determining the size of a nanoobject. 2. Elastic propertics of a nanocrystal substantially
depend on the number of atomic layers forming it. 3. The shape and size of a nanocrystal introduce an

additional anisotropy into its elastic properties.

Bending stiffness determination. Let us consider a two-dimensional single crystal shown in Figure 2.

The crystal possesses N > 1 atomic layers in the y direction and J > N layers in the x direction. Forces @),

Figure 2:

arc applicd to atoms located at crystal end-walls, where n is the number of the horizontal layer, containing
the specified atom. These forces are changing linearly with coordinate, keeping the zero average value of the
overall force acting on the end-wall, so that we can consider the macroscopic boundary conditions as an action
ol a pure moment (without tensile stress). If the moment interaction of particles is not taken into account, the
bending stiffness of the monocrystal has the form
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Here D, is the value for the bending stiffness from the macroscopic theory of elasticity. According to formula
(3), the bending stiflness of the nanocrystal is varying in the limits of 0 < D < D,. For the small values of N
formula (3) gives the bending stiffness values smaller then D, and finally it vanishes for N = 1.

However, it is known that the bending stiffness of single-wall nanotubes does not equal to zero. Taking into
account the moment interaction of particles, we obtain the following expression for the bending stiffness
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where EZ_ is the value of rotational Young modulus from the macroscopic moment theory of elasticity. It is
easy to see that the bending stiffness of the nanocrystal given by formula (4) does not vanishe for N = 1.

The model of the delamination processes of a preliminary stressed bi-layered plate from rigid foundation is
proposed. On the basis of the considered solution of specified dependence of its diameter on the parameters of
plate layers is found.



