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Elastic magnetic filaments have interesting applications in biotechnology [1,2]. They are encountered
also in living world, for example in magnetotactic bacteria [3]. Elastic magnetic filaments have inter-
esting static and dynamic properties which are studied by Kirchhoff model of elastic rod taking into
account magnetic forces. The total energy of rod is
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Here C is the curvature elasticity constant, a is a radius of rod, χ is its magnetic susceptibility,
µ = 1 + 4πχ, R is the radius of curvature of the centerline, ~t is the tangent vector to the centerline,
Λ is the tension accounting for inextensibility of the rod. The equations for the rod’s tangent angle
and tension are obtained if the isotropic Rouse dynamics is assumed ζ~v = ~K (ζ = 4πη

ln L/a+c
is friction

coefficient per length unit) and the condition of local inextensibility is imposed. In dimensionless form
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is the magneto elastic number characterizing the ratio of the magnetic and

elastic forces. Equations (2),(3) describe the behaviour of the elastic magnetic filaments in different
situations. Starting from slightly bent configuration of the rod normal to the magnetic field ”U”
like turns (hairpins) are formed as metastable configurations (Fig.1a). Stable hairpins exist also with
nonequal length of their legs. Introducing the phase lag between the direction of the rotating field
and the tangent of the rod β = ωt− ϑ the equation for the angle β is equivalent to the equation (2)
with the forcing term ωτ on the right side. In this case there is several regimes of the rod dynamics.
For low frequencies of the field the rod rotates synchronously with it and has characteristic bent
shapes (Fig.1b). Above the critical frequency which is close to the given by relation (ωτ)c = 2.37Cm,
which is obtained from simplified model, the periodic regime arises with characteristic bendings and
straightenings of the rod (Fig.1c). The simplified model of the rod dynamics the equation for the
tangent angle of the rod apart from the regularizing term of curvature elasticity is similar to the
equation for the phase lag of the elongated viscous magnetic drop under the action of rotating magnetic
field [4].
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0a2 is characteristic viscous relaxation time, Bm =
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number characterizing the ratio of magnetic and capillary forces but a small parameter ε accounts for
the viscous torques arising at the bending of the viscous filament. Since the function 1

Bm
β + sin 2β is

nonmonotonous the formation of the shockwave of the tangent occurs at frequencies of the rotating
field larger than critical (Fig.1d). From the balance of torques follows that the magnetic torque leads
to the normal shearing force F ′

n = −T0. Shearing force of such kind arises also in the chains of the
magnetic particles in magnetorheological suspensions due to the magnetic dipolar interaction between
neighbours. On the other hand the particles are held together due to magnetic interaction forces.
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Figure 1: (a) 104t = 0.69(1), 3.47(2),
6.97(3), 17.36(4), 34.72(5), 52.08(6), 69.44(7),
1333.33(8), (Cm = 26); (b) ωτ = 10(1), 30(2),
50(3), 60.6(4), (Cm = 25); (c) 102t = 1.04(1),
1.32(2), 1.56(3), 1.82(4), 2.08(5), 2.34(6),
2.6(7), 2.86(8), (Cm = 25, ωτ = 300); (d)
t = 0.28, 0.56, 1.11, 1.67, 2.78 starting from
the curve on the center, (Bm = 1.5; ωτ = 5.0;
ε = 10−7).

The following relation for the number of particles in the chain N at the critical frequency of the chain
breaking due to the transition to nonsynchronous regime holds
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arccos 1/3. Relation (5) shows in agreement with experimental data [5] that the

number of particles which may be hold together by the magnetic interaction forces depends on Mason
number Ma = 12ηω

M2 as N = const
Ma1/2 . This shows that the model of elastic magnetic rod may play

the same role in the understanding of the properties of magnetorheological suspensions which the
Kirchhoff model plays for the understanding of biopolymers [6].

The model of elastic magnetic rod allows also to understand some phenomena in the magnetotactic
bacteria which contains the chains of magnetic particles. For the chain of magnetic particles the
curvature elasticity comes from the magnetic interaction between neighbouring particles. In the case
of chain of ferromagnetic particles the curvature elasticity constant turns out to be Cm = m2

2d3 d, where
m is the magnetic moment of particle but d is its size. The value of the curvature elasticity constant
allows to estimate the critical compression force at which the chain buckles Λc = π2Kc/L

2 which in
the case of the magnetite magnetosomes with ten particles of the size d = 0.1 µm [3] in the chain
gives Λc = 12.3 pN . This force is in the range of the forces arising in different biological systems -
molecular motors, DNA elasticity [6].
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