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Summary The upper and lower bounds for the electric induction intensity factors for multiple piezoelectric cracks are obtained by
the boundary element method using the impermeable and permeable crack solutions. The numerical Green'’s function for the crack is
developed by the analytical integration of the continuous distribution of the generalized dislocation dipoles. The Green'’s function has
thel/+/r generalized stress singularity and no post process for the intensity factor determination is needed.

INTRODUCTION

The coupling of mechanical and electrical behaviors of the piezoelectric materials has find its applications to sensors
(e.g., sonars), actuators (e.g., ultrasonic cleaners, ultra-precision positioners, ink jet print heads), signal transmitters (e.g.,
cellular phone, remote car opener), and surface acoustic wave devices to mention a few. The modern life style cannot be
sustained without piezoelectric materials. However, they are plagued with the brittleness of the widely used piezoceramic
materials. The lack of understanding and modelling tools of the piezoelectric fracture is limiting the further progress in
the piezoelectric material based technology. This paper addresses issues on the crack surface electric boundary conditions
and suggests the upper and lower bound approach in the determination of the electric induction intensity factors using the
boundary element method.

CRACK SURFACE ELECTRIC BOUNDARY CONDITIONS

While the mechanical boundary condition (BC) on the crack surface is always traction-free, the electric boundary condi-
tion comes in different degrees of shielding the electric induction defined by the electric permeability. For a crack along
thex,-axis, the permeable BC

Dy =Dy; &F - =0, (1)

does not shield the electric induction at all, whére and® are the electric induction and the electric potential, respec-
tively, with & indicating the upper and lower crack surfaces. Meanwhile, the impermeable BC

Dy =D, =0, )

shields the electric induction completely. The permeable BC is correct if the crack is closed, while the impermeable BC is
correct if the permittivitye. of the crack medium is zero. Since no medium has zero permittivity (the vacuum has the least
permittivity g = 8.854 x 10~12C'/(V'm)) and we consider open cracks, the both boundary conditions are not correct.
Hao and Shen [1] proposed the semi-permeable BC

Dy = Dy; Dj(uf —uy) = —e. (P — @), ®)

which is the consistent BC adopted in this proposal. Note that the semi-permeable BC is reduced to the impermeable BC
whene,. = 0 and to the permeable BC whei —u, = 0 and that the impermeable and permeable BCs set the bounds for

the semi-permeable BC. The majority of the earlier works adopted the impermeable BC due to the convenience to obtain
the analytical solution. This led to contradiction between the experimental results and the fracture prediction by the
(negative) energy release rate. Results predicted by the permeable BC are in much better agreement with the experimental
results than those by the impermeable BC. If the crack opening displacement is extremely small, the permeable BC may
provide a good approximation despite its inconsistency. The shift toward the consistent semi-permeable BC was made
gradually but slowly.

UPPER AND LOWER BOUNDS FOR THE INTENSITY FACTOR

While the solutions of the permeable and the impermeable cracks are linear, that of the semi-permeable crack is non-linear.
Since the distribution of the electric induction on the crack surface, which is needed to determine the crack opening
displacement and the electric potential jump across the crack, is unknown we need an iteration process to determine
all unknowns. This is inherently a nonlinear process even though each step consists of the linear solver. This poses a
serious difficulty for the complex multiple crack configurations that appear in the real life applications. Meanwhile, the
analytical solution for the single semi-permeable crack suggests the electric induction intensity factor is bounded by those
by impermeable and the permeable cracks. So even though we may not get the exact semi-permeable solution, we can
still get the upper and lower bound solutions using the impermeable and permeable cracks.
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Figure 1. The crack face electric inductials for BSN with Ho4 = 0.
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Figure 2. The crack face electric inductials for BSN with Ho4 # 0.

NUMERICAL GREEN’S FUNCTION FOR PIEZOELECTRIC CRACKS

While the FEM needs to model the entire domain surrounding a crack, the BEM only needs a single line to model the
crack. It makes more sense to use the BEM for crack problems. As the demands for the analysis of more complicated
crack configurations, such as multiple and curvilinear cracks, arise the advantage of the BEM over the FEM becomes
clearly visible. We propose to use the BEM crack modelling strategy developed by Denda and Mattingly [2] for the
general anisotropic solids. It uses the Green'’s function approach to multiple crack problems. The crack is modeled
by the continuous distribution of the generalized dislocation dipoles withtherack tip behavior and the resulting
integration is evaluated analytically using the complex variable theory. The resulting crack element, called the whole crack
singular element, offers a collection of mutually independent crack opening modes each of whichlhagrtieack tip

stress singularity. It serves as the numerical Green’s function for the crack since the magnitudes of each mode must be
determined numerically to satisfy the crack surface boundary condition. The solution strategies for the impermeable and
permeable cracks are summarized as follows. (1) For the impermeable crack all the crack surface generalized traction
components are set to zero. (2) For the permeable crack set the electric potenti&jTﬁnmzero and solve the problem

by only applying the traction zero boundary condition on the crack. Siﬁf@é = 0 we only need three traction free
boundary condition on the crack surface to determine three unknown crack opening displacement components. Both (1)
and (2) are linear procedures and can be solved by the BEM for multiple crack problems.

NUMERICAL RESULTS AND CONCLUSIONS

Figure 1 shows Variation abs (x10~2C/m?) (a) as the function oSS (x 107 N/m?) for fixed D$® = 0.1 x 10~2C/m?

and (b) as the function abs° for fixed 055 = (0, 1, 10, 100, 100) x 107 N/m?; material is the Barium Sodium Niobate
(BSN) with Hoy = 0. Figure 2 shows the corresponding variation for the BSN vlith # 0. (a) For fixedD3® =

0.1 x 1072C'/m? and (b) For fixedr55 = 10 x 107 N/m?. Note thatH,, is the measure of coupling between the
crack openingu, and the electric potential jumfzy and depends on the material constants and directions. These figures
indicate that the impermeable and the permeable cracks set the bounds for the semi-permeable cracks.
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