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Summary This paper deals with a smart composite disk consisting of a structural layer onto which two piezoceramic layers are
bonded. An unknown heating temperature distribution acting on the bottom surface is inferred from an electric potential distribution
induced in the middle piezoceramic layer. A step-wise electric potential distribution applied to the top piezoceramic layer that
controls a thermoelastic displacement distribution on the bottom surface is determined by optimization subject to stress constraints.

INTRODUCTION

By utilizing the direct and converse piezoelectric effects inherent in piezoelectric materials, functions called "self-
monitoring” and "self-control”, which are essential for smart structures, can be achieved. For smart structures operating
in thermal environments, materials must have heat resistance, high strength and high stiffness.

This paper deals with a smart composite circular disk that controls a thermoelastic deformation resulting from an
unknown thermal load. The disk consists of a transversely isotropic structural layer and two piezoceramic layers of
crystal class 6mm, as shown in Fig. 1. The middle piezoceramic layer serves as a sensor and the top piezoceramic layer
serves as an actuator. An unknown heating temperature distribution acting on the bottom surface of the disk is inferred
from the induced electric potential distribution assumed to be measured on the upper interface of the sensor layer. Then
a step-wise electric potential distribution is applied to electrodes concentrically arranged on the top surface of the
actuator layer in order to control the thermoelastic displacement distribution on the bottom surface of the disk. This
problem is analyzed by means of the piezothermoelastic potential function approach [1]. The voltage applied to each
electrode is determined by optimization using Fletcher-Reeves’s conjugate gradient method, so that the difference
between the induced and desired displacement distributions is minimized subject to stress constraints.

PROBLEM STATEMENT

Disk characteristics

The layers are numbered 1 to 3 from the bottom. The quantities in the i-th layer will be denoted by corresponding
symbols with subscript i. The layer thicknesses are denoted by c¢;. The top and bottom surfaces of the disk are taken to
be traction-free, the layers are perfectly bonded at the interfaces, and the cylindrical edge of the disk is constrained
against radial deformation and simply supported at the bottom. In this case the elastic boundary conditions are given by
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where uik, O',«k[, D.

; and D;, denote the elastic displacements, stresses, electric potentials and electric displacements.

Inverse problem

Both layer interfaces provide perfect thermal contact, heat convection occurs over the top surface of the disk, and the
cylindrical edge is thermally insulated. In this case the thermal boundary conditions are
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where T, are temperatures, A, are coefficients of thermal conductivity and /#, is the boundary conductance.

For the composite disk under the above boundary conditions, it is assumed that an unknown heating temperature
distribution ©(r) acts on the bottom surface of the disk, the induced electric potential distribution is measured at some
points on the upper interface of the sensor layer, the top surface of the disk is free of electric charge, and the measured
electric potentials can be approximated by the function Vv, (r):
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where V,, is a constant electric potential and superscript 7 designates quantities associated with the thermal loading.
Instead of invoking the thermal boundary condition on the bottom surface of the disk, the electric boundary condition
given in the first of Egs. (8) is assumed to be available; thus this inverse problem is analyzed and temperatures, elastic
displacements, electric potentials, stresses and electric displacements are obtained. The unknown heating temperature is
deduced from the temperature in the structural layer by applying the thermal boundary condition on the bottom surface:
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Control problem
The control problem entails determination of the step-wise electric
potential distribution that must be applied to the top surface of the disk,
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so that the resultant axial elastic displacement on the bottom surface of
the disk has a desired distribution u, g(r): L0l
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the electric loading. The voltage V) applied to each electrode is 7
determined by optimization subject to stress constraints. Fig. 2 Obtained heating temperature distribution.
NUMERICAL RESULTS
Numerical results are presented in terms of the following dimensionless quantities:
__ r,z - _ _ _ b;,c; 1w — a0, 0 — V. _ u; _ ao;,
(V»Z)=( )s (bi,C,',"k,W)=( A ), By=ahy, © = > ,Vk=_k, M,’/<=—lk ,O-,'/d:—lkl
a a Vo ldy Vo Vo lda | Y, Voldy|

where Y, is Young’s modulus, ¢, is the coefficient of linear thermal expansion and d,, is the piezoelectric coefficient.
Numerical calculations are carried out for a transversely isotropic graphite/epoxy composite layer and two cadmium
selenide layers of crystal class 6mm [1]. The layer thicknesses and Biot’s numbers are taken to be ¢, =0.02,
¢, =C5 =0.001, B, =1and B, =0.1. The measured electric potentials are assumed to be approximated by the function
v, (F)=1-272+7". The desired elastic displacement distribution on the bottom surface of the disk is taken to be
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uncontrolled elastic displacement on the bottom surface of the disk. It is seen that the maximum value of the controlled
elastic displacement is reduced to about one fortieth of that of the uncontrolled elastic displacement in the case of n =35
and the stress constraints are satisfied. For n =5, the distributions of controlled and uncontrolled elastic displacements
on the bottom surface as well as the applied electric potential distribution are illustrated in Fig. 3.

Table 1 Determined applied voltages, maximum stresses, and evaluations of optimization.

n v, v, v, v, Vs G./10° | &,/10° | &,/10° fob R[%]
1 | 12981 — — — — -150.00 0.32 4.10 80.07 77.44
3 3396 | 12837 143.12 — — -150.00 0.82 4.58 2.18 11.98
5 | 13536 141.69 96.92 56.66 11.50 | -139.08 8.91 4.51 0.04 2.59
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