Study of non-linear magnetomechanical constitutive relations of ferromagnetic materials

Dai-Ning Fang¹, Xue Feng, Yongping Wan and Keh-Chih Hwang Department of Engineering mechanics Tsinghua University, Beijing 100084, China

ABSTRACT

Ferromagnetic materials have been widely used in modern science and technology since they become the important functional materials. A robust constitutive relation is desirable in order to guide the processing and development of ferromagnetism and for use in the design of ferromagnetic devices. In this paper, both experimental and theoretical work performed on developing nonlinear magnetomechanical constitutive relations of ferromagnetic materials are presented.

1. A novel magnetomechanical testing setup and the measurement techniques, which developed for of measurement the nonlinear magnetomechanical response of both magnetostrictive and soft ferromagnetic materials subjected to coupled magnetomechanical loading, are introduced (see **Figure** 1). In experiments, there were three kinds of ferromagnetic materials used investigate the magneto-mechanical coupling behavior, such the soft-ferromagnetic metal of Ni6 and electrolytic nickel, the giant-magnetostrictive material Manganese-Zinc (Terfenol-D), ferrite ceramics. The characteristic curves of ferromagnetic materials were measured, including the hysteresis loops, piezomagnetic curves, magnetization curves and the magnetostriction curves under different compressive stress and

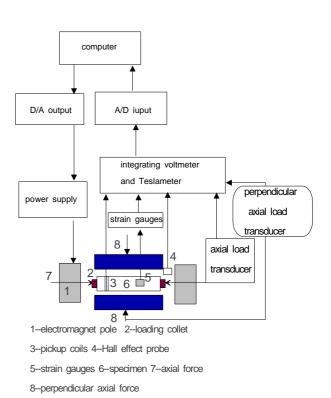


Figure 1: Schematic of the setup. The industrial PC controls the electromagnet supplier and monitors the magnetic H, magnetic induction B and the magnetostriction of specimens by an A/D-D/A interface card.

stress-strain curves under different external magnetic fields.

The of 2. response ferromagnetic materials is dependent on the loading history because of energy dissipation, which was similar to the classical plastic theory. According Karafillis-Boyce model the eanisotropic plastic theory, the general constitutive model for ferromagnetic and magnetostrictive materials, based on the internal variable theory, is developed. The remnant magnetization strain and are considered as internal variables, three-dimensional and constitutive relation can be built in general. Based on the magneto-mechanical vield surface measured the authors, non-quadratic magneto-mechanical yield surface is introduced for both

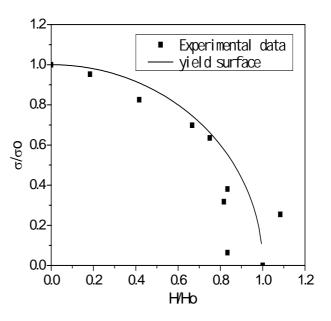
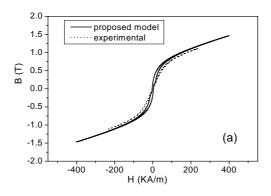



Figure 2. The dimensionless initial yield surface of Terfenol-D

isotropic and anisotropic materials (see Fig. 2). The anisotropy includes both magnetic anisotropy and elastic anisotropy, which can be described by introducing a set of irreducible tensorial state variables. The linear transformation from anisotropy to isotropy is presented. Then, the proposed model is generalized for both isotropic materials and anisotropic materials. Furthermore, the magneto-mechanical yield surface of the magnetostrictive material Terfenol-D was measured and the magneto-mechanical hardening moduli can be determined by Helmholtz free energy. The macroscopic features of ferromagnetic materials, such as hysteresis loop, magnetostrictive, magnetostrictive hysterisis, can be predicted. Figure 3 shows that the calculated results are consistent with the experimental data well .

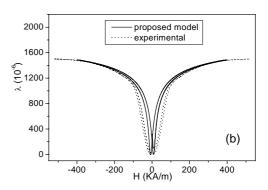


Figure 3. Comparison of the theoretical and measured results under magnetomechanical loading with 3MPa compressive stress: (a) the hysteresis curve; (b) the magnetostrictive curves.

The corresponding author, E-mail: fangdn@mail.tsinghua.edu.cn