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Summary We consider a hyperelastic body in a static intermediate configuration, loaded by an additional distribution of
transient eigenstrains, the latter being e.g. due to the electric field in a piezoelastic body, or due to the temperature in a
thermoelastic body. We seek for distributions of eigenstrain, such that that the incremental displacements vanish throughout
the body. In the present paper, within the framework of the theory of small dynamic deformations superimposed upon a static
strain, we derive solutions for eigenstrains that are applied at a sub-region of the body only.

1. INTRODUCTION

Consider a structure that is fixed at some part of its boundary, and that is initially at rest in a pre-deformed intermediate
state with a possibly large strain. The constitutive behavior of this body is taken as hyperelastic, and the static
intermediate state is assumed to be infinitesimally superstable. The body is loaded by an additional distribution of
transient eigenstrains, the actuating effects of which are described by actuation stresses. Eigenstrains e.g. may be due to
the electric field in a piezoelastic body, or due to the temperature in a thermoelastic body. We seek for additional
actuation stresses, such that that the incremental displacements vanish throughout the body for all times. The body then
will remain in the static intermediate configuration, despite its transient actuation by eigenstrains. A static solution for
such “nilpotent” distributions was addressed by Irschik and Ziegler [1], and the dynamic extension was given in Irschik
and Pichler [2], see Irschik et. al. [3] for beam vibrations. In these solutions, the actuation was required to be
distributed all over the body under consideration, and the linear theory of elasticity was employed. In the present paper,
we derive solutions for actuation stresses that are applied at a sub-region of the body only, and we work within the
framework of the theory of small dynamic deformations superimposed upon a possibly large static strain.

2. A THEOREM ON EIGENSTRAINS WITHOUT DISPLACEMENTS

Consider an elastic body being at rest in some deformed state of equilibrium. This state may represent a large static
deformation from an undistorted configuration of the body and is denoted as the intermediate configuration. Due to an
additional time-dependent eigenstrain, small incremental displacements u are superimposed upon the intermediate
configuration, accompanied by small incremental deformations. In order to describe this small motion, we use the
intermediate state as the reference configuration. The incremental first Piola-Kirchhoff stress tensor S then is given as:

S=AH]+S¢ )]

with §=T, -T, where T} is the first Piola-Kirchhoff stress in the actual configuration and 7 is the static Cauchy
stress in the intermediate configuration. The gradient of u with respect to the place in the intermediate configuration is

denoted as H. The second order tensor S¢ in Eq. (1) represents the incremental stress actuation tensor due to the
additional eigenstrain superimposed upon the intermediate state. E.g., in case this eigenstrain is due to an incremental
temperature rise 6, the actuation stress can be taken as a linear mapping of 6, since we deal with small incremental

displacements, S = A[OM ], the quantity 6M representing the tensorial eigenstrain. When the additional eigenstrain is

formed by an electric field in a piezoelastic body, S can be also written as a linear mapping of the electric field vector.
The incremental stress S has to satisfy the local form of the equation of balance of linear momentum,

DivS = pit, @

where a superposed dot denotes the time-derivative, and p is the mass density. Div stands for the divergence operator
with respect to the place in the intermediate configuration. Homogeneous kinematic boundary conditions are assigned at
the part B, of the boundary, while at the remaining part JB, the additional surface tractions are taken to vanish. Since

we assume the additional motion to start from the intermediate configuration, which is at rest, we deal with
homogeneous initial conditions. In the present contribution, we derive the following theorem:

Assume that the intermediate configuration is infinitesimally superstable and that the additional actuation stress S “
acts in some sub-region_ B of the body B, vanishing outside of B. Consider the class of a non-vanishing divergence-
free actuation stress in B satisfying homogeneous boundary conditions at &BZ , a so-called statically admissible stress,

DivS“=0,  dB,: §“i=0. 3)

This class produces a displacement that vanishes throughout B, u=0 V ¢. Hence, when the actuating stress S¢
satisfies Eqs.(3), then the incremental displacements u vanish throughout the body B for all times ¢=0. The body

thus will remain in the static intermediate configuration, despite the transient action of S¢.



3. NUMERICAL EXAMPLE

The above result for eigenstrains without displacements should be of technological interest in various fields, due to the
widespread applicability of the theory of eigenstrains. The methodology requires that the actuation stress be tailored,
which becomes practically visible in view of modern functional and smart materials. In the following, we present a
computational example using the Finite Element Code ABAQUS, which allows taking into account a non-
homogeneously distributed anisotropic transient actuation stress of thermal origin. Consider the quadratic domain B
shown in Fig.1 in a state of plane strain. The region is subdivided into a sufficiently high number of Finite Elements
of the type CPE4R. Two adjacent edges, EAC, of B are fixed, forming the part 4B, of the boundary. The remaining

edges CDE form the stress-free part dB, of the boundary. The rectangle EAFG forms the subregion B. We assume
the region B to represent an undistorted, stress-free configuration, with the isotropic tensor of elastic parameters A

(Young's modulus Y =21 1.10% in proper units of stress, and Poisson's ratio v = 0.3).
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Figure 3: Step response
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Figure 1: Original problem
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Figure 2: Auxiliary problem

In order to obtain a non-vanishing reference displacement, we consider the case of a transient isotropic actuation stress
of thermal origin, being distributed constantly within the subdomain B in Fig. 1, S/ =S*H (), S =-af,A[I], and
vanishing outside of B, in the domain GFCD. H (t) denotes the Heaviside step function, the unit tensor is denoted as

I, and the thermal eigenstrain is chosen as af, = 2.10™°. The corresponding step-response displacements are denoted

as isotropic reference problem in Fig.3. We then consider the problem of determining a statically admissible stress, see
Egs.(3), in order to obtain a vanishing displacement. For that sake, we treat the auxiliary problem of Fig.2, where the

fixed part &Bl of the corresponding body with domain B is formed by the adjacent edges FAF, and the stress-free part
0732 is formed by FGE. The static actuation stress S is applied to the auxiliary body shown in Fig. 2, and the

corresponding static stress distribution S is computed. Following the above theorem, the transient actuation stress S
=S8 H(t), which is anisotropic and non-homogeneously distributed, then is applied to the subdomain B of B in the
original problem, since such an S satisfies Egs.(3). The step response of the domain B is again calculated by means
of the dynamic Finite Element code. As a typical result, the horizontal displacement of corner D is presented in Fig. 3
(denoted as thermal actuation solution) and compared to the corresponding step response of the isotropic reference

problem. It is seen that the dynamic displacement due to S“(the thermal actuation solution) is not only much smaller
than the isotropic reference solution, but that it indeed does vanish, as predicted by our above theorem.
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