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COMPOSITE PLATES WITH ACTIVE FIBERS
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Summary The bending problem of composite plates reinforced with active fibers is considered. The fibers are made of a shape
memory material which may undergo a martensitic phase transformation. The matrix is treated as an elastic medium. Due to the
phase transformation in fibers the deformation process is dissipative and accompanied by hysteresis loops. A macroscopic model
of the stress-induced phase transformation under isothermal conditions is applied. The dissipation mechanism is traced by imposing
the requirements of the second principle of thermomechanics and making use of a set of internal variables describing distributions of
austenite and different variants of martensite. This hysteretic problem is formulated in the form of a variational inequality of evolutional
type. The finite dimensional counterpart of it is derived by the finite element method, and is solved incrementally as a sequence of
complementarity problems. Results of numerical simulation will be presented.

INTRODUCTION

Novel, the so-called smart, active or adaptive materials allow one to construct new functional types of structures and
devices; composite materials can be designed to effectively meet the highly specialized needs of advanced technology [3].
In this presentation we are concerned with the mathematical modeling of composite plates that are symmetrically rein-
forced with shape memory alloy (SMA) fibers. Perfect bonding between the fibers and the matrix is assumed. Depending
on the stress level, the SMA fibers can undergo a martensitic phase transformation. The latter takes place at a micro scale
and can be described as cooperative movements of atoms into a new more stable crystal structure. Martensitic transforma-
tion is the diffusionless, first-order transformation occurring by nucleation and growth. The parent phase is conventionally
called austenite, whilst the product of the transformation, which may occur in many variants, is called martensite. Al-
though, the martensitic phase transformation is accompanied by energy dissipation, it is crystallographically reversible as
the thermoelastic shape memory alloys exhibit a unique ability to recover shape.
We consider a thin plate of total thickness

�
composed of ��� orthotropic layers, of which ��� are reinforced with

SMA fibers. The total domain occupied by the plate is ���	��

� ��������������� , where ��� stands for the undeformed mid-
plane of the composite plate. Let ����
�� ��� ��!"� be the displacement vector with its components � ��� ��! along the
Cartesian coordinate system axes #%$'& , respectively. Further, let ���(�)
�� � ��� � ��! � � denote the midplane displace-
ments vector, in which

! �*� ! �+
�# � $ ��,�� is the deflection of the midplane and we set �-�*�/.0� � � neglecting the
extension-bending coupling. In this evolutional nonlinear process

,
plays a role of a time-like parameter. In the clas-

sical Kirchhoff plate theory the nonzero strains written in vector form are 1(2 col 
43+565 � 3�787 � � 3�567 � �9�%&�: , where:;� col 
=<�> ! � � < # > � <�> ! � � < $�> � � <�> ! � � < # < $ � . The ? th layer is located between the points &��@&�A and &B�0&CAEDGF in the
thickness axis. We have supposed that the response of the matrix is linearly elastic, whilst that of fiber’s material will be
governed by the phase transformation rules in the range of isothermal pseudoelasticity.

The linear elastic constitutive equations H0�JIK1 between components of the stress H and strain 1 tensors can be written
for the ? th orthotropic layer in its principle material coordinates #LF�# > # M in the matrix formNOP OQ0R FR >RTS
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where components ]'c d of the elasticity matrix I define elastic properties of the layer. In the global coordinate system#%$'& , relations () become NOP OQ R 565R 787R 567
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where
eI X AEY ��f X AEY I X AEY f X AEY T, f X AEY – the transformation matrix from #gF # > # M to #%$'& for the ? th layer, see e.g. [10].

CONSTITUTIVE RELATIONS FOR A SMA LAYER

The shape memory alloy is a multiphase material that may occur in �ih0j preferred strain states k c which correspond to
austenite and � variants of martensite, whose volume fractions l c are changing during the martensitic phase transforma-
tion process. At fixed volume fractions m , the averaged Helmholtz free energy of the austenite-martensite mixture may be



expressed as a locally quadratic multi-well function, cf e.g. [1, 4, 9],

� 
=1 � m � � j��� 1B� k 
=m ����� I � 1 � k 
=m ��� h � DGF�
c � F

l c 	 c h j� � DGF�
c � F
� DGF�
d
� F

l c l d � c d
wherein k 
=m � �
� � DGFc � F l c k c is the effective transformation strain, I the (same) elasticity tensor for each phase, and	 c , � c d material constants. From the 2nd principle of thermomechanics we can obtain an expression for the driving force
of phase transformation which must satisfy the positive dissipation constraint [6]
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Accounting for (2) we introduce the threshold functions � � for the driving force � � 
�� � j ������� � � �
and define the

phase transformation functions � � ��� � 
=1 � m � whose positive 
 � D and negative 
 ��� parts are

� D� 2 � D� � � ��� . � � �� 2 � � �!� �� � .
The evolution of volume fractions l � of martensite variants are governed by the following conditions
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The stresses in the reinforced ' th layer are, cf (1),NOP OQ R 565R 787R 567
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CLOSING REMARKS

Using (1) and (4) we arrive at the differential equation for the plate,* 
,+ : 
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wherein
* 
43 � is the linear partial differential operator of an anisotropic plate, 2 is loading, and
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The equlibrium condition (5) and the phase transformation conditions (3) will be written in the form of a variational
equation and variational inequalities, respectively, from which we can determine the deflection

! � and distributions m X �_Y �m X �_Y 
�# � $ ��,�� of different variants of martensite in all reinforced layers of the plate. A computer code for this evolutional
boundary value problem has been developed, based on the standard FEM [5]. Results of numerical examples will be
presented. As the next step, it would be interesting to apply hierarchical models [7, 8], and to consider the case of
magnetic shape memory alloy fibers where an adaptive procedure could be used [2].
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