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Summary The description and computation of fine scale localized phenomena arising in a material (during nanoindentation, for
instance) is a challenging problem that has given birth to some multiscale methods. In this work, we propose an analysis of a simple one
dimensional method that couples two scales, the atomistic one and the continuum mechanics one. The method includes an adaptative
criterion in order to split the computational domain into two subdomains, that are described at different scales.

INTRODUCTION

The traditional framework in mechanics is the continuum description. However, when nanoscale localized phenomena
arise, the atomistic nature of material cannot be ignored: for instance, to understand how dislocations appear under a
nanoindenter, one has to describe the deformed atomistic lattice. The situation is the same when one wants to have a
detailed understanding of the behaviour of grain boudaries in a polycristal. In all these examples, an appropriate model
to describe the localized phenomena is the atomistic model, in which the solid is considered as a set of discrete particles
interacting through given interatomic potentials.
However, the size of materials that can be simulated by only using the atomistic model is very small in comparison to the
size of the materials one is interested in. Fortunately, in the situations we considered above, the deformation is smooth
in the main part of the solid. So, a natural idea is to try to take advantage of both models, the continuum mechanics
one and the atomistic one, and to couple them. In this work, we analyse a method initially proposed in [1] that couples
these two models into a single one. Other coupling methods have been proposed in [2], [3]. Another possibility is to use
continuum mechanics models in which the elastic energy depends not only on the strain, but also on higher derivatives
of the displacement [4], or to add a surface energy [5]. Time-dependent methods based on mixed hamiltonians have also
been proposed in [6].

The atomistic and continuum mechanics models
Let us consider a one dimensional material occupying in the reference configuration the domain Ω = (0, L), submitted to
body forces f and fixed displacement boundary conditions on ∂Ω. In the atomistic model, the solid is considered as a set
of N + 1 atoms, whose current positions are (ui)N

i=0. The energy of the system is given by

Eµ(u0, . . . , uN) = h

N−1
∑

i=0

W

(

ui+1 − ui

h

)

− h

N
∑

i=0

f(i h) ui, (1)

where W is an interacting potential between atoms, and h is the atomic lattice parameter, which is linked to the number
of atoms and the size of the solid by L = Nh. We have assumed only nearest neighbour interaction. The potential W is
such that its minimum is attained at 1, so, at equilibrium without body forces and boundary conditions, the interatomic
distance is h. The microscopic equilibrium configuration is a solution of the variational problem

inf
{

Eµ(u0, . . . , uN ), u0 = 0, uN = a
}

. (2)

In the continuum mechanics model, the solid deformation is described by the map u : Ω → R, and the elastic energy
associated with the deformation u reads

EM (u) =

∫

Ω

W (u′(x)) dx −

∫

Ω

f(x) u(x) dx. (3)

The equilibrium of the solid is defined by the minimization problem

inf {EM (u), u(0) = 0, u(L) = a} . (4)

In principle, the equilibrium configuration of the solid is given by (1)-(2), but the huge number of particles to be considered
makes the problem impossible to solve in practice. For a given smooth deformation u, it can be shown [7] that the
microscopic energy Eµ(u(0), u(h), . . . , u(Nh)) converges to EM (u) when the atomic lattice parameter h goes to 0 and
the number of atoms goes to infinity such that Nh remains constant, Nh = L. Thus, solving (3)-(4) gives a good
approximation of the solution of the atomistic problem, when the equilibrium deformation is smooth.

A coupled model
When non regular deformations are expected to play a role, following [1], we approximate the solution of the atomistic
problem with the solution of a coupled model. A partition Ω = ΩM ∪Ωµ of the domain being given, a natural expression



for a coupled energy reads

Ec(u) =

∫

ΩM

W (u′(x)) − f(x)u(x) dx + h
∑

i; ih,ih+h∈Ωµ

W

(

ui+1 − ui

h

)

− h
∑

i;ih∈Ωµ

f(ih)ui. (5)

The equilibrium of the solid is given by the minimization problem

inf







Ec(u), u|ΩM
is a map on ΩM , u|Ωµ

is a discrete set of variables (ui)ih∈Ωµ
,

u is continuous at the interface ∂ΩM ∩ ∂Ωµ, u(0) = 0, u(L) = a







(6)

The questions we address here are:

• is the previous definition (5) of the coupled energy always the most appropriate?

• how to (adaptively) define the partition Ω = ΩM ∪ Ωµ such that the solution of the coupled problem (5)-(6) is a
good approximation of the solution of the atomistic problem (1)-(2)?

• Can error bounds be derived?

RESULTS

We study both the general case of a convex energy density W , and a specific example of non convex energy, the Lennard-
Jones case.

The convex case
In this case, we propose an a priori definition for the partition which is only based on properties of the body forces f .
Essentially, the subdomain ΩM (in which the continuum mechanics model will be used) is the part of the domain where
the body force f and its derivative f ′ are small.
With this definition, we show that the solution of the coupled problem (5)-(6) is a good approximation of the solution of
the atomistic problem (1)-(2): when the atomic lattice parameter h goes to 0, the displacement uc and the strain given by
the coupled model converge to the displacement uµ and the strain given by the atomistic model.

A non convex case: the Lennard-Jones case
In this case, we show that expression (5) for the coupled energy might be inappropriate, and we thus propose a modified
expression.
If the material is submitted to an extensional loading (i.e., if u(L) = a > L in the case of no body forces), the macroscopic
model and the atomistic model solutions exhibit a fracture. With the natural coupled model (5)-(6), the equilibrium also
exhibits a fracture, but this fracture is always located in the macroscopic subdomain ΩM . However, we would rather like
the atomistic subdomain Ωµ to contain the fracture. To solve this issue, we propose to work with the coupled energy

Eh
c (u) =

∫

ΩM

Wh(u′(x)) − f(x)u(x) dx + h
∑

i; ih,ih+h∈Ωµ

W

(

ui+1 − ui

h

)

− h
∑

i;ih∈Ωµ

f(ih)ui,

with Wh(t) = W (t) + ρh(t − t0)+, where t0 is some threshold and ρh goes to 0 when h goes to 0. Several choices are
possible for ρh. Finally, the algorithm we propose consists in two steps:

• compute a solution uM of the macroscopic problem (3)-(4), and from the properties of uM , define a partition
Ω = ΩM ∪ Ωµ.

• with this partition, minimize the coupled energy Eh
c (u) to find uc.

We will show that the resulting solution uc is a good approximation of the atomistic solution. In particular, if the solid is
submitted to extensional loadings, the atomistic subdomain Ωµ contains the fracture.
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