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Summary External stress on a crystal affects the Gibbs free energy of formation and migration of point defects, thereby

lowering/raising defect concentrations and mobilities. This effect is determined by the volume change of the crystal—for

defect creation it is the formation volume, Vf . Lattice distortion at the defect itself can only be predicted by atomistic

simulations, not by continuum elasticity. However, this distortion, represented as a dipole tensor of forces in continuum

elasticity, determines the far-field deformation, and hence Vf . For the vacancy in silicon, we have quantified Vf by such

studies, using the Stillinger-Weber empirical potential at atomic scales and elasticity at continuum scales. We also have

treated issues related to bridging these scales, obtained consistent interpretations of parameters, identified the limitations

of continuum, molecular and ab initio calculations, and found overall agreement with relevant results by Eshelby.

BACKGROUND

Point defect (vacancy/interstitial) concentrations are determined by their Gibbs free energies of formation, Gf .
The influence of an external stress, σ, is to raise or lower Gf . For mobile defects, this modulation is apparent also
on the migration energy. Consequently, the concentration and mobility of point defects are strongly influenced
by σ. Solid state diffusion of dopant atoms in silicon and germanium requires pairing of these atoms with
mobile point defects. Therefore, it is presently of great technological importance to understand the interaction
mechanism between external stress and defects. A formation volume, Vf , quantifies the interaction and is entirely
determined by deformation of the crystal around the point defect (following section). Continuum elasticity
cannot predict the distortion at the defect itself; this field must be extracted from atomistic calculations. For
vacancies/interstitials the distortion at this scale is strongly influenced by changes in bonding between first-
and second-nearest neighbor atoms. The accuracy of ab initio calculations [1] notwithstanding, this class of
methods may not be ideal for determining the overall crystal deformation, and hence Vf : While values of Vf

converge only for systems much larger than 500 atoms, ab initio calculations are currently limited to about 500
atoms, placing larger systems beyond the present reach of these methods.

Molecular simulations allow system sizes that, at millions of atoms, are larger by many orders of magnitude.
Realistic crystal sizes are still not attained, but the systems are large enough that displacement and stress fields
escape the effect of lattice discreteness at the point defect. Most importantly, they converge to the elastic fields
which, when appropriately scaled, are invariant of crystal size. We have carried out such atomistic calculations
of the mono-vacancy in silicon using the Stillinger-Weber interatomic potential. If the deformation at the defect
is represented as a dipole tensor, continuum elasticity solutions of the displacement and internal stress fields
can be obtained using the Green’s function for anisotropic elasticity. These fields are indispensable for checking
the far-field solutions from atomistic calculations. In turn, far-field solutions determine Vf .

ELASTICITY AND MOLECULAR STUDIES OF VACANCY-INDUCED DEFORMATION

The dipole tensor (preceding section), D, used as the continuum elasticity analogue of a vacancy, is called a
center of contraction. The displacement and internal stress fields around a vacancy can be obtained by using the
Green’s function for anisotropic elasticity [3]. The body force in the Green’s function method is specified by D.
Being a continuum representation of the forces on nearest-neighbor atoms of the vacancy, D must be extracted
from molecular calculations. An accurate quantification of D thus determines the deformation field and hence
Vf . Any method to obtain D essentially imposes consistency between the fine scale atomistic calculations and
“coarse scale” continuum elasticity for this problem.

Employing the Stillinger-Weber interatomic potential for silicon, the dipole tensor, D, was obtained by a least
squares’ minimization of difference between interatomic forces from the molecular calculations, and the elasticity
solution for force at the same point due to the vacancy as center of contraction. For ease of writing we describe
this functional using the isotropic elasticity solution in an infinite medium:
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Here, natom is the total number of atoms, f i is the force on the i
th atom, ri is the position vector of the

atom relative to the vacancy, λ and µ are the Lamé parameters of the isotropic medium, and dAi is the radial
projection of the atom’s cross-sectional area. The necessary condition for minimization of F with respect to D
gives a closed-form result for the dipole tensor. Assuming a dipole tensor of the form D = D1, where 1 is the
second-order isotropic tensor, the extracted value of D is found to vary as explained in Figure 1.
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Figure 1. Atomistic calculations for variation in D

with radial position of shell of atoms used to extract it.

(i) Discreteness effect: Continuum elasticity does not

hold close to the vacancy; the discreteness of the lattice

dominates the results here. (ii) Plateau: In a range

sufficiently far from the vacancy, continuum elasticity

holds, and as it predicts, D is essentially constant. (iii)

Boundary image force: For a finite computational cell

of atoms, image forces from the periodic boundaries

exert their influence. Therefore, D fitted to the exact

elasticity result for an infinite crystal deviates from the

expected constant value.

Our detailed calculations use the anisotropic elasticity solution for a finite crystal, in which case D is more
nearly constant as the free boundary is approached. The important result, that D ≈ 38 nN · Å holds.

As a check for consistency the extracted dipole value was used in continuum elasticity calculations on an
anisotropic silicon crystal, of finite extent, and cubic in shape. The relaxation volume measured at the crystal
free surface is independent of the crystal size, as can be understood by considering the case of the isotropic,
spherically-shaped crystal of radius R:
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For a crystal of any radius, V (R) = D
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) is independent of R. For anisotropic finite crystals of

cubic shape, finite element calculations resulted in a relaxation volume ≈ 30 Å3. This is in reasonably good
agreement with the relaxation volume of ≈ 34 Å3 obtained directly from the molecular calculations (Figure 2).

Figure 2. Variation of relaxation volume with r/L from molec-

ular calculations on cubic computational cells of side 2L.

A final question that arises is whether the inter-
nal volume, V (0) in (2), or the external volume,
V (R) is the thermodynamically-appropriate for-
mation volume that is conjugate to an external
stress. In other words, under a uniform external
stress, σ = p1, when the stress-free Gibbs free en-
ergy G0

f is modified to Gf = G0
f −pVf , is Vf = V (0)

or V (R)? Eshelby [2] shows that for a continuum
body, when a sub-domain undergoes a stress-free

reduction in volume ∆V , the work done by p is
p∆V . It is not immediately obvious how this re-
sult can be applied to the present case, since here
the sub-domain is the defect, which is discrete, and
does not admit the continuum arguments used by
Eshelby. Also, it is unclear what the stress-free re-

duction in volume is at the defect, and how it is related to V (0) and V (R). We have devised a construction in
the spirit of Eshelby’s “cutting and welding” operations which shows conclusively that Vf = V (R) is conjugate
to σ. Thus Gf = G0

f − pV (R) is the correct Gibbs free energy of formation under external stress.

CONCLUSION

We have consistently combined continuum elastic and atomistic calculations to answer fundamental questions
on the thermodynamics of point defect formation under stress. By our calculations we have arrived upon a
deformation field that is consistent between atomistic and continuum methods, and yields the vacancy formation
volume. Notably, the result is in agreement with the stress-defect interaction result of Eshelby [2]. Our methods
will be used to study the thermodynamics of vacancy migration, and the formation/migration of the interstitial
and dopant-defect pairs.
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