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Abstract

The mechanics of crystal lattices containing dislocations can be expressed in terms of fields that are supported on the
lattice itself, e. g., the displacement field and the energy density; and fields that are defined on certain ancillary lattices,
e. g., the eigendeformation fields which describe the dislocations. In the harmonic approximation, the energy is a quadratic
form in the displacement field and the eigendeformations. At fixed dislocation density, the displacement field of the crystal
lattice follows by energy minimization. We show that the structure of the resulting mechanics of defective lattices can be
streamlined and given a compelling interpretation in terms of a discrete version of homology and differential calculus. The
resulting differential operators generalize the conventional differential operators of exterior calculus in a manner which
reflects and takes full account of the structure of the crystal lattice. Based on this mathematical framework, we generalize
to lattices classical constructs and relations from the geometrical theory of continuously distributed dislocations, such as
the notion of Burgers circuit and slip system; and Frank’s and Kröner’s formulae. We also show how the forest-hardening
model can be phrased in terms of certain topological invariants. We illustrate the versatility of the theory by means of
a number of selected applications, including: core energies of bcc dislocations; the dislocation field of an expanding
nanovoid; and the dislocation structures selected by the forest mechanisms and the attendant hardening rates.

EXTENDED SUMMARY

The classical geometrical theory of continuously distributed dislocations relies on the notion of Burgers circuit to char-
acterize the distribution of dislocations in an otherwise linear elastic continuum (cf, e. g., [3]). Thus, ifβe : R3 →
gl(R3,R3) is the elastic deformation field, the formula

b(C) =
∮

C

βedx (1)

gives the total Burgers vector of all the dislocations encircled by the closed loopC, or Burgers circuit. In particular, two
circuitsC1 andC2 are equivalent if one can be mapped homotopically to the other without changing the total Burgers
vectorb(C) along the way. In particular, this requires thatb(C1) = b(C2). This introduces an equivalence relation
among loops inR3, each of which represents a dislocation bundle. The equivalence classes consisting of loops having
a common point have a group structure in which the group operation between two loops consists of traversing the loops
consecutively. The resultingfundamental groupprovides an intrinsic characterization of the topology of the dislocation
ensemble. Alternatively, the geometry of the dislocation ensemble is described by Nye’s dislocation density tensor

α = βe ×∇ (2)

since, by Stoke’s theorem

b(C) =
∮

C

βedx =
∫

S

(βe ×∇)ndS (3)

whereS is any surface havingC as boundary andn is the (consistently oriented) unit normal toS. In crystals, the dislo-
cation motion is confined to crystallographically determined slip planes, which requires that the displacement gradient be
of the form

∇u = βe + βp (4)

with βe absolutely continuous and the plastic deformationβp defining a measure supported on discrete crystallographic
planes. The energy of the crystal is then variously given by

E =
∫

1
2
cijklβ

e
ijβ

e
kldx =

∫
1
2
cijkl(ui,j − βp

ij)(uk,l − βp
kl)dx (5)

At fixed βp, the displacement field follows by energy minimization. It is also of interest to determine the energy min-
imizing dislocation structures that arise under suitable constraints and loading conditions, and the energy stored in the
dislocation structures.
This classical picture suffers from a number of fundamental shortcomings, all of which can be traced to the idealization of
the crystal as a continuum and the corresponding jettisoning of its lattice structure. Thus, perfect or Volterra dislocations
have infinite energy per unit length. This type of divergence can be eliminated by the introduction of a core cut-off radius,
but this fix is ad-hoc and not rooted in fundamental theory. Other maladies that afflict the continuum theory are the
absence of any natural minimum separation between slip planes, and the extraneous nature of the Burgers vectors.



A satisfactory resolution of these deficienciesa fortiriori requires an acknowledgement from the outset of the discrete
nature of crystals and the formulation of a mechanics of defective crystal lattices. In this framework, the familiar notion
of continuum is replaced by that of a Bravais lattice of points. This substitution immediately begs a number of fundamental
questions, namely:

i) What is the discrete analog of a Burgers circuit?

ii) What is the discrete analog of thegrad, curl anddiv operators?

iii) What is the discrete analog of line integrals, surface integrals, unit normals and Stokes theorem?

iv) What is the discrete analog of a slip system?

among others. In the present work we address these issues systematically with the aid of basic tools from algebraic topol-
ogy, such as CW complexes and homology; from differential calculus, such as differential complexes and integration; and
from analysis, such as the Fourier transform andΓ-convergence. The picture that emerges gives rigorous mathematically
expression to: the notion of a perfect or defect-free lattice, in which, in particular, every loop is the boundary of an area
and can be shrunk to a point, and every close surface is the boundary of a volume and can be likewise shrunk to a point;
the notion of discrete differential operators and integrals, including Stoke’s theorem; the notion of a crystallographic slip
system, with well-defined Burgers vectors and a minimum spacing between slip planes; and the notion of dislocation
densities, dislocation entanglements such as junctions, and the topological transitions attendant to the formation and dis-
solution of junctions. These tools provide a powerful framework for the formulation of a discrete dislocation dynamics in
crystal lattices. The theory supplies a full three-dimensional generalization of some existing theories of crystallographic
slip on a single plane [2, 1]. We illustrate the versatility of the theory by means of a number of selected applications,
including: core energies of bcc dislocations; the dislocation field of an expanding nanovoid; and the dislocation structures
selected by the forest mechanisms and the attendant hardening rates.
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