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1 Summary

Spiral surface growth is well understood in the limit where motion of the spiral ridge is
controlled by the local supersaturation of adatoms in its surrounding. In liquid epitaxial
growth, however, spirals can form governed by both, transport of heat as well as solute. We
propose for the first time a two-scale model of epitaxial growth which takes into account
all of these transport processes assuming a separation of time scales for the transport of
heat compared to that of the solutal field.

2 Introduction

The spiral morphology is known to be one of the most widespread growth mor-
phologies for crystals with atomically flat surfaces. Growth of such crystals is due
to the incorporation of new atoms at monoatomic steps in the surface. If a step
is pinned at a screw dislocation (see Fig. 1), they wind around this dislocation.
As a consequence a spiral forms at the surface (see Fig. 2). The dynamics of the
monoatomic steps as well as the final steady-state spacing [ between successive
steps! is determined by the interplay of surface diffusion, attachment kinetics of
atoms at the steps, and line tension of the steps. Recently, the observations of
spiral ridges in sputtered high-temperature superconducting thin films [1] and in
certain semiconductor materials grown by molecular beam epitaxy (MBE) [2] has
stimulated renewed interest in spiral surface growth.

Classically this growth problem is modeled by the Burton-Cabrera-Frank (BCF)
approach to surface growth [3]. According to that approach atoms are first adsorbed
to the crystalline surface, where they involve in a diffusion process along the surface.
During this stage these atoms are called adatoms. Such adatoms can either desorb
from the surface with a probability 1/7 per unit time, or they are incorporated
into the crystal at a step and thereby contribute to its growth process. Therefore,
two different growth regimes can be distinguished, which depend on the ratio of [
and the diffusion length z; = v/ D7. Here D denotes the surface diffusion constant.
Regime one refers to surface growth for which desorption is fast (z; < [). As a
consequence only adatoms which are deposited near a step can be incorporated,
and thus step dynamics is local, i.e. the step velocity is completely determined by
local supersaturation and by step curvature. This regime is well understood and
fully accounted for by the classical BCF theory of spiral growth [3, 4].

The second regime refers to step-flow growth at temperatures where desorption
is negligible. In this regime all deposited atoms reach a step. As a consequence
successive turns of the spiral are strongly coupled via adatom diffusion and step
dynamics turns out to be a highly non-local free boundary problem. The steady-
state growth of this regime has been investigated by approximate theories [5, 6]
and by the boundary integral method [7]. Succeedingly these results have been
validated by full dynamical simulations of the model equations proposed by Burton,
Cabrera and Frank originally based on a phase field model [8]. Moreover, the
latter dynamical simulations allowed to investigate the crossover from the local to
the desorption-free limit with respect to two characteristic aspects. The first of
these two aspects concerns the scaling of [, the second the approach to steady-state

!Equivalently one could focus on the surface slope a/l, where a is the lattice parameter.
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Figure 1: Dislocation at a flat surface. This dislocation might trigger spiral growth
(see Fig. 2).

Figure 2: Step formation due to the pinning at a screw dislocation.

growth: In the local limit, spirals find their final step spacing after a single rotation.
Without desorption, however, a slower relaxation to steady-state growth due to the
global redistribution of adatoms is encountered. The numerical simulations in [8]
reveal, that this relaxation time depends on the third power of the system size. This
result refers to a surface with a single dislocation. However, it is well known that
relaxation may depend on the density of screw dislocations as well.

The main goal of this contribution is to investigate spiral dynamics for a charac-
teristic domain of a macroscopic surface containing an array of screw dislocations.
Le., we will extend the results of [8] to include the dependence on the density of
screw dislocations at a surface. Doing so we will focus on the scaling of [ and the re-
laxation to steady-state growth, as well. Our results are based on a two-scale model
for surface growth, which derivation we will discuss briefly. We will then report
on numerical investigations of our model resulting in our new scaling relations for
dislocation growth of competing spirals. Finally we will conclude with an outlook
on further applications to understand the mechanisms and consequences of spiral
interaction at epitaxial surfaces in more detail.

References

[1] M. Hawley, I. D. Raistrick, J. G. Beery, and R. J.Houlton, Science 251, 1587 (1991);
C. Gerber, D. Anselmatti, J. G. Bednorz, J. Mannhart, and D. G. Schlom, Nature
350, 279 (1991).

[2] G. Springholz, A. Y. Ueta, N. Frank, and G. Bauer, Appl. Phys. Lett. 69, 2822
(1996).

[3] W. K. Burton, N. Cabrera, and F. C. Frank, Philos. Trans. R. Soc. London, Ser.
A243, 299 (1951).

[4] N. Cabrera and M. M. Levine, Phil. Mag. 1, 450 (1956).

[6] N. Cabrera and R. V. Coleman, in: The Art and Science of Growing Crystals, ed.
by J. J. Gilman, John Wiley, New York (1963).

[6] T. Surek, J. P. Hirth, and G. M. Pound, J. Cryst. Growth 18, 20 (1973).

[7] J. P. van der Eerden, J. Cryst. Growth 53, 305, 315 (1981); see also J. P. van der
Eerden, in Handbook of Crystal Growth, Vol. la, ed. by D. T. J. Hurle, Elsevier
(1993).

[8] A. Karma, and M. Plapp, Phys. Rev. Lett. 81, 4444 (1998).



