AVERAGE N-HEDRA AS DESCRIPTORS OF 3-D NETWORK CELLS

Martin E. Glicksman,

Materials Science & Engineering Dept., Rensselaer Polytechnic Institute, Troy, NY, USA 12180-3590

<u>Summary</u> Network cells represent physical entities, such as grains in polycrystals, bubbles in foam, or cells in biological tissues. We represent network cells with \mathcal{N} neighbors by "proxies" called average \mathcal{N} -hedra, satisfying space filling and network topological averages. Analysis of the set of \mathcal{N} -hedra yields estimates of the metric and energetic properties of irregular cells in isotropic foams and polycrystals as functions of the number of neighbors, \mathcal{N} .

INTRODUCTION

The energetics and growth kinetics of space-filling networks, such as polycrystals and foams, remain important topics within the general subject of microstructure evolution. The foundation for grain and bubble growth in two dimensions was established a half-century ago by C.S. Smith [1] and J. von Neumann [2], and by W.W. Mullins [3]. This paper reports on an analysis of idealized "average \mathcal{N} -hedra" (ANH's) that may be used as "proxies" to determine the excess free energy and growth kinetics of an isotropic network structure in \mathbb{R}^3 . ANH's have \mathcal{N} identical curved faces, each enclosed by $p=6-\frac{12}{\mathcal{N}}$ edges; $2(\mathcal{N}-2)$ identical vertices equidistant from its centroid; and $3(\mathcal{N}-2)$ identical curved edges. ANH's form a complete set for $3\leq\mathcal{N}\leq\infty$, although only four members ($\mathcal{N}=3,4,6$, and 12) are actually constructible, i.e., where p is an integer. All other ANH's are abstract geometric forms. Nonetheless, each ANH provides a descriptor of the average geometric, energetic, and kinetic properties of all irregular network cells within the same class, \mathcal{N} . Figure 1 compares an ANH with an irregular member of its class, $\mathcal{N}=12$. Note that the ANH shown on the left has 12, identical, slightly bulging, pentagonal faces, whereas the irregular 12-hedron on the right contains a mixture of quadrilateral, pentagonal, and hexagonal faces. The p-value, vertex count, etc., according to Euler's theorem, are nonetheless identical.

Figure 1. Left: Average 12-hedron, consisting of identical pentagonal faces. Its 20 identical vertices are positioned equidistant from the volume centroid. Middle: Irregular 12-hedron exhibiting of a mixture of quadrilateral, pentagonal, and hexagonal faces. The average properties of any 12-hedron in an isotropic network (number of edges, vertices, p-value, vertex image, average dihedral angle, etc.) are identical to those of its ANH proxy. Right: Irregular 24-hedron, for which a constructible ANH does not exist. Note its concave faces. Renderings provided through the courtesy of Dr. S.J. Cox, Trinity College, Dublin, Ireland [4].

NETWORKS IN 3-D

Geometry of ANH's

The area, $\mathbb{A}(\mathcal{N})$, and volume, $\mathbb{V}(\mathcal{N})$ of any ANH, are expressible as fractions of the corresponding areas and volumes of a sphere with the same radius of curvature as that of the faces of the ANH. These are, respectively,

$$\mathbb{A}(\mathcal{N}) = \mathcal{G} \cdot A_{sph}, \quad \text{and} \quad \mathbb{V}(\mathcal{N}) = \mathcal{F} \cdot V_{sph},$$
 (1)

where the fractions $\mathcal{G}=\frac{1}{4\pi}\iint_{faces}KdA$ is the ratio of the total spherical image of the ANH to that of a sphere (4π) , and $\mathcal{F}=\frac{\mathcal{N}}{2}+\frac{\mathcal{N}-2}{16\pi}\left[2^{\frac{3}{2}}-57\arccos\frac{1}{3}+33\arcsin\left(\frac{2}{\sqrt{3}}\cos\frac{\pi}{p}\right)-\tan\arcsin\left(\frac{2}{\sqrt{3}}\cos\frac{\pi}{p}\right)\right]$. The integral of the Gaussian curvature, K, appearing in the area fraction, \mathcal{G} , can also be found exactly for any ANH using the Gauss-Bonnet theorem,

$$\iint_{faces} KdA = 4\pi - 3(\mathcal{N} - 2)\Omega^{edge} - 2(\mathcal{N} - 2)\bar{\Omega},\tag{2}$$

where the constant $\bar{\Omega}=0.551287\ldots$ is the spherical image of each trihedral vertex as demanded by topology. The function Ω^{edge} is the spherical image contributed by each curved edge and varies with $\mathcal N$ according to the formula

$$\Omega^{edge} = \pi + 2\arctan\left(\sin\frac{\alpha(\mathcal{N})}{2}\tan\frac{\pi}{p}\right) - 2\arccos\left(-\frac{1}{3}\right),\tag{3}$$

where $\alpha(\mathcal{N})$ is the angle between poles located on an ANH at the geometric centers of adjacent faces, namely

$$\alpha(\mathcal{N}) = 4 \arctan \sqrt{1 - 2 \sec \left(\frac{\pi}{2(\mathcal{N} - 2)}\right) \cos \left(\frac{\pi (2\mathcal{N} - 3)}{6(\mathcal{N} - 2)}\right)}.$$
 (4)

Network energetics

The excess free energy of a 3-d network, ΔF , such as a foam or polycrystal, is given by its interfacial area sum

$$\Delta F = \frac{\gamma}{2} \sum_{i} A_{i} = \frac{\gamma}{2} \sum_{i} e(\mathcal{N}_{i}) \left[V(\mathcal{N}_{i}) \right]^{\frac{2}{3}}, \tag{5}$$

where γ is the specific interfacial free energy of the faces of the polyhedra. Cox and Fortes [5] showed that the free energy, may be expressed as a sum over the volumes of polyhedral network cells as shown in the second equality displayed in Eq.(5), where the dimensionless ratio, $e(\mathcal{N})$, is defined as

$$e(\mathcal{N}) \equiv \frac{\mathbb{A}(\mathcal{N})}{\left[\mathbb{V}(\mathcal{N})\right]^{\frac{2}{3}}}.$$
 (6)

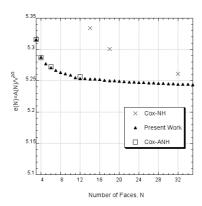


Figure 2. Plot of $e(\mathcal{N})$ versus \mathcal{N} . Shown are the analytical values derived here for ANH's (solid symbols), and recent simulation data reported by Cox and Fortes for constructible ANH's (open squares) and irregular network \mathcal{N} -hedra (crosses) [5].

Equation (6), which is scale independent, is easily evaluated with the analytical expressions for the areas, $\mathbb{A}(\mathcal{N})$, and the volumes, $\mathbb{V}(\mathcal{N})$, shown in Eqs.(1). Cox and Fortes [5] extended results derived originally by Vaz et al. for 2-d networks [6], and confirmed that in 3-d the ratio $e(\mathcal{N})$ also varies extremely weakly with \mathcal{N} . Figure 2 provides a comparison of the present analytic results, as expressed through Eq.(6), with the numerically computed values reported by Cox and Fortes for several \mathcal{N} -hedra using Brakke's surface evolver [7] to evaluate the areas and volume. The analytical values for $e(\mathcal{N})$ agree well with the values computed by Cox and Fortes, especially in the four cases where the simulated \mathcal{N} -hedra correspond to constructible ANH's ($\mathcal{N}=3,4,6$, and 12). For the three cases reported in [5] where the polyhedra are not ANH's, the simulations yield slightly higher values (0.5% to 2%).

Coxeter [8], and more recently, DeHoff [9] showed that the average number of faces per polyhedron in a large isotropic 3-d network is $\langle \mathcal{N} \rangle \approx 13.397$, corresponding to the "ideal" flat-faced cell that satisfies local equilibrium. The average value $\bar{e} \approx 5.254$, so after substitution into Eq.(5) the total excess free energy arising from its interfaces of an isotropic 3-d network consisting of i polyhedral cells is

$$\Delta F \approx 2.63 \, \gamma \sum_{i} \left[\mathbb{V}(\mathcal{N}_{i}) \right]^{\frac{2}{3}}. \tag{7}$$

CONCLUSION

Highly symmetric average \mathcal{N} -hedra (ANH's) may be used as topological "proxies," or descriptors for polyhedral network cells. Although ANH's are constructible only in a few cases ($\mathcal{N}=3,4,6,12$), their general analysis yields important geometric and energetic properties of *all* irregular (constructible) network cells. The kinetic properties of ANH's and the evolution of 3-d network structures will be discussed elsewhere [10] due to space limitations.

References

- [1] C.S. Smith, "Grain Shapes and other Metallurgical Applications of Topology," Chapter in *Metal Interfaces*, American Society for Metals, Cleveland, OH, 1952, p. 65.
- [2] J. von Neumann, in Metal Interfaces, written discussion, American Society for Metals, Cleveland, OH, 1952, p. 108.
- [3] W. W. Mullins, J. Appl. Phys. 27, 1956, p. 900. Phys. Rev. E., 63, 2001, p. 402.
- [4] S.J. Cox, *Private Communication*, Trinity College, Dublin, Ireland, 2003.
- [5] S.J. Cox and M.A. Fortes, *Phil. Mag. Lettr.*, **83**, 2003, p. 28.
- [6] M.F. Vaz, M.A. Fortes, F. Graner, Phil. Mag. Lett., 82, 2002, p. 575.
- [7] K. Brakke, 1992, Exper. Math., 1, 141.
- [8] H.S.M. Coxeter, M.S. Longuet-Higgins, and J.C.P. Miller, Phil. Trans. Roy. Soc. London, Series A, 236, 1954, p.401.
- [9] R.T. DeHoff, Acta Metall. Mater., 42, no. 8, 1994, p. 2633.
- [10] M.E. Glicksman, "Analysis of 3-D Network Structures," Phil. Mag., submitted, 2003.