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AVERAGE N -HEDRA AS DESCRIPTORS OF 3-D NETWORK CELLS
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Summary Network cells represent physical entities, such as grains in polycrystals, bubbles in foam, or cells in biological tissues.
We represent network cells with N neighbors by “proxies” called average N -hedra, satisfying space filling and network topological
averages. Analysis of the set of N -hedra yields estimates of the metric and energetic properties of irregular cells in isotropic foams and
polycrystals as functions of the number of neighbors, N .

INTRODUCTION

The energetics and growth kinetics of space-filling networks, such as polycrystals and foams, remain important topics
within the general subject of microstructure evolution. The foundation for grain and bubble growth in two dimensions
was established a half-century ago by C.S. Smith [1] and J. von Neumann [2], and by W.W. Mullins [3]. This paper
reports on an analysis of idealized “average N -hedra” (ANH’s) that may be used as “proxies” to determine the excess
free energy and growth kinetics of an isotropic network structure in R

3. ANH’s have N identical curved faces, each
enclosed by p = 6 − 12

N edges; 2(N − 2) identical vertices equidistant from its centroid; and 3(N − 2) identical curved
edges. ANH’s form a complete set for 3 ≤ N ≤ ∞, although only four members (N = 3, 4, 6, and 12) are actually
constructible, i.e., where p is an integer. All other ANH’s are abstract geometric forms. Nonetheless, each ANH provides
a descriptor of the average geometric, energetic, and kinetic properties of all irregular network cells within the same
class, N . Figure 1 compares an ANH with an irregular member of its class, N = 12. Note that the ANH shown on the
left has 12, identical, slightly bulging, pentagonal faces, whereas the irregular 12-hedron on the right contains a mixture
of quadrilateral, pentagonal, and hexagonal faces. The p-value, vertex count, etc., according to Euler’s theorem, are
nonetheless identical.

Figure 1. Left: Average 12-hedron, consisting of identical pentagonal faces. Its 20 identical vertices are positioned equidistant from
the volume centroid. Middle: Irregular 12-hedron exhibiting of a mixture of quadrilateral, pentagonal, and hexagonal faces. The
average properties of any 12-hedron in an isotropic network (number of edges, vertices, p-value, vertex image, average dihedral angle,
etc.) are identical to those of its ANH proxy. Right: Irregular 24-hedron, for which a constructible ANH does not exist. Note its
concave faces. Renderings provided through the courtesy of Dr. S.J. Cox, Trinity College, Dublin, Ireland [4].

NETWORKS IN 3-D

Geometry of ANH’s
The area, A(N ), and volume, V(N ) of any ANH, are expressible as fractions of the corresponding areas and volumes of
a sphere with the same radius of curvature as that of the faces of the ANH. These are, respectively,

A(N ) = G · Asph, and V(N ) = F · Vsph, (1)

where the fractions G = 1
4π

∫∫
faces

KdA is the ratio of the total spherical image of the ANH to that of a sphere (4π),

and F = N
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curvature, K, appearing in the area fraction, G, can also be found exactly for any ANH using the Gauss-Bonnet theorem,∫∫
faces

KdA = 4π − 3(N − 2)Ωedge − 2(N − 2)Ω̄, (2)

where the constant Ω̄ = 0.551287 . . . is the spherical image of each trihedral vertex as demanded by topology. The
function Ωedge is the spherical image contributed by each curved edge and varies with N according to the formula
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where α(N ) is the angle between poles located on an ANH at the geometric centers of adjacent faces, namely
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Network energetics
The excess free energy of a 3-d network, ∆F , such as a foam or polycrystal, is given by its interfacial area sum

∆F =
γ

2

∑
i

Ai =
γ

2

∑
i

e(Ni) [V (Ni)]
2
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where γ is the specific interfacial free energy of the faces of the polyhedra. Cox and Fortes [5] showed that the free energy,
may be expressed as a sum over the volumes of polyhedral network cells as shown in the second equality displayed in
Eq.(5), where the dimensionless ratio, e(N ), is defined as

e(N ) ≡ A(N )

[V(N )]
2
3
. (6)

Figure 2. Plot of e(N ) versus N . Shown are the analytical values derived here for ANH’s (solid symbols), and recent simulation data
reported by Cox and Fortes for constructible ANH’s (open squares) and irregular network N -hedra (crosses) [5].

Equation (6), which is scale independent, is easily evaluated with the analytical expressions for the areas, A(N ), and the
volumes, V(N ), shown in Eqs.(1). Cox and Fortes [5] extended results derived originally by Vaz et al. for 2-d networks
[6], and confirmed that in 3-d the ratio e(N ) also varies extremely weakly with N . Figure 2 provides a comparison
of the present analytic results, as expressed through Eq.(6), with the numerically computed values reported by Cox and
Fortes for several N -hedra using Brakke’s surface evolver [7] to evaluate the areas and volume. The analytical values for
e(N ) agree well with the values computed by Cox and Fortes, especially in the four cases where the simulated N -hedra
correspond to constructible ANH’s (N = 3, 4, 6, and 12). For the three cases reported in [5] where the polyhedra are not
ANH’s, the simulations yield slightly higher values (0.5% to 2%).
Coxeter [8], and more recently, DeHoff [9] showed that the average number of faces per polyhedron in a large isotropic
3-d network is 〈N〉 ≈ 13.397, corresponding to the “ideal” flat-faced cell that satisfies local equilibrium. The average
value ē ≈ 5.254, so after substitution into Eq.(5) the total excess free energy arising from its interfaces of an isotropic 3-d
network consisting of i polyhedral cells is

∆F ≈ 2.63 γ
∑

i

[V(Ni)]
2
3 . (7)

CONCLUSION

Highly symmetric average N -hedra (ANH’s) may be used as topological “proxies,” or descriptors for polyhedral network
cells. Although ANH’s are constructible only in a few cases (N = 3, 4, 6, 12), their general analysis yields important
geometric and energetic properties of all irregular (constructible) network cells. The kinetic properties of ANH’s and the
evolution of 3-d network structures will be discussed elsewhere [10] due to space limitations.
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