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AVERAGE N-HEDRA AS DESCRIPTORS OF 3-D NETWORK CELLS
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Summary Network cells represent physical entities, such as grains in polycrystals, bubbles in foam, or cells in biological tissues.
We represent network cells with A neighbors by “proxies” called average A -hedra, satisfying space filling and network topological
averages. Analysis of the set of V-hedra yields estimates of the metric and energetic properties of irregular cells in isotropic foams and
polycrystals as functions of the number of neighbors, \.

INTRODUCTION

The energetics and growth kinetics of space-filling networks, such as polycrystals and foams, remain important topics
within the general subject of microstructure evolution. The foundation for grain and bubble growth in two dimensions
was established a half-century ago by C.S. Smith [1] and J. von Neumann [2], and by W.W. Mullins [3]. This paper
reports on an analysis of idealized “average N -hedra” (ANH’s) that may be used as “proxies” to determine the excess
free energy and growth kinetics of an isotropic network structure in R3. ANH’s have N identical curved faces, each
enclosed by p = 6 — % edges; 2(N — 2) identical vertices equidistant from its centroid; and 3(N — 2) identical curved
edges. ANH’s form a complete set for 3 < N < oo, although only four members (N' = 3,4, 6, and 12) are actually
constructible, i.e., where p is an integer. All other ANH’s are abstract geometric forms. Nonetheless, each ANH provides
a descriptor of the average geometric, energetic, and kinetic properties of all irregular network cells within the same
class, N. Figure 1 compares an ANH with an irregular member of its class, A" = 12. Note that the ANH shown on the
left has 12, identical, slightly bulging, pentagonal faces, whereas the irregular 12-hedron on the right contains a mixture
of quadrilateral, pentagonal, and hexagonal faces. The p-value, vertex count, etc., according to Euler’s theorem, are
nonetheless identical.

Figure 1. Left: Average 12-hedron, consisting of identical pentagonal faces. Its 20 identical vertices are positioned equidistant from
the volume centroid. Middle: Irregular 12-hedron exhibiting of a mixture of quadrilateral, pentagonal, and hexagonal faces. The
average properties of any 12-hedron in an isotropic network (number of edges, vertices, p-value, vertex image, average dihedral angle,
etc.) are identical to those of its ANH proxy. Right: Irregular 24-hedron, for which a constructible ANH does not exist. Note its
concave faces. Renderings provided through the courtesy of Dr. S.J. Cox, Trinity College, Dublin, Ireland [4].

NETWORKS IN 3-D

Geometry of ANH’s

The area, A(N'), and volume, V(N) of any ANH, are expressible as fractions of the corresponding areas and volumes of
a sphere with the same radius of curvature as that of the faces of the ANH. These are, respectively,

AWN)=G-Agpn, and V(N)=F - Vyp, (1)

where the fractions G = - [[ faces ICdA is the ratio of the total spherical image of the ANH to that of a sphere (47),

and F = %/ + /\1/6;2 [2% — 57 arccos % + 33 arcsin (% cos %) — tan arcsin (% cos %)] . The integral of the Gaussian

curvature, K, appearing in the area fraction, G, can also be found exactly for any ANH using the Gauss-Bonnet theorem,

/ KdA = 41 — 3(N — 2)Q°%9°¢ — 2(N — 2)Q, )
faces

where the constant ) = 0.551287... is the spherical image of each trihedral vertex as demanded by topology. The
function Q°?9€ is the spherical image contributed by each curved edge and varies with A" according to the formula

1
Q°%9¢ — 1 4+ 2arctan <Sin %'M) tan %) — 2arccos (—§> , 3)

where a(N) is the angle between poles located on an ANH at the geometric centers of adjacent faces, namely

a(N) = 4arctan \/1 — 2sec (ﬁ) cos (%) @)




Network energetics

The excess free energy of a 3-d network, AF, such as a foam or polycrystal, is given by its interfacial area sum
7 7 ; NE
AF—§ZAZ—§Xije(M>[V(M>]3, ®)

where 7 is the specific interfacial free energy of the faces of the polyhedra. Cox and Fortes [5] showed that the free energy,
may be expressed as a sum over the volumes of polyhedral network cells as shown in the second equality displayed in
Eq.(5), where the dimensionless ratio, e(N'), is defined as
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Figure 2. Plot of e(N') versus N'. Shown are the analytical values derived here for ANH’s (solid symbols), and recent simulation data
reported by Cox and Fortes for constructible ANH’s (open squares) and irregular network N -hedra (crosses) [5].

Equation (6), which is scale independent, is easily evaluated with the analytical expressions for the areas, A(N/), and the
volumes, V(N'), shown in Egs.(1). Cox and Fortes [5] extended results derived originally by Vaz et al. for 2-d networks
[6], and confirmed that in 3-d the ratio e(N\') also varies extremely weakly with N. Figure 2 provides a comparison
of the present analytic results, as expressed through Eq.(6), with the numerically computed values reported by Cox and
Fortes for several A/-hedra using Brakke’s surface evolver [7] to evaluate the areas and volume. The analytical values for
e(N) agree well with the values computed by Cox and Fortes, especially in the four cases where the simulated A-hedra
correspond to constructible ANH’s (A = 3, 4,6, and 12). For the three cases reported in [5] where the polyhedra are not
ANH’s, the simulations yield slightly higher values (0.5% to 2%).

Coxeter [8], and more recently, DeHoff [9] showed that the average number of faces per polyhedron in a large isotropic
3-d network is (V) ~ 13.397, corresponding to the “ideal” flat-faced cell that satisfies local equilibrium. The average
value € ~ 5.254, so after substitution into Eq.(5) the total excess free energy arising from its interfaces of an isotropic 3-d
network consisting of ¢ polyhedral cells is

2

AF ~2.637) [VIN)]®. N

CONCLUSION

Highly symmetric average A/-hedra (ANH’s) may be used as topological “proxies,” or descriptors for polyhedral network
cells. Although ANH’s are constructible only in a few cases (N = 3,4, 6, 12), their general analysis yields important
geometric and energetic properties of all irregular (constructible) network cells. The kinetic properties of ANH’s and the
evolution of 3-d network structures will be discussed elsewhere [10] due to space limitations.
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