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Summary It is known that cylinders with supported ends subjected to high enough axial flow develop divergence and at higher flow 
coupled-mode flutter, as shown experimentally and confirmed by linear theory. Also, the same dynamics is predicted by linear theory 
for the closely related problem of a pipe conveying fluid, but post-divergence flutter in this case has never been observed. Its non-
existence was confirmed by nonlinear theory.  The problem of the cylinder in flow is re-examined in this paper by means of weakly 
nonlinear theory. It is shown that post-divergence flutter does exist, but not as an instability of the trivial equilibrium, but as a Hopf 
bifurcation emanating from the divergence solution. For high enough flow, interesting dynamics follow, including quasiperiodicity 
and chaos. Reasons for the different dynamics with internal and external flow are explored. 

 
BACKGROUND 

 
It has been shown, in the 1960s, that cylinders with supported ends immersed in sufficiently high axial flow are subject 
to divergence (buckling), and at higher flow to coupled-mode flutter – by means of linear theory, confirmed by 
experiment [1,2]. Linear theory predicts the same dynamical behaviour for the closely related system of a pipe 
conveying fluid with supported ends (i.e. a cylinder with internal flow): divergence followed by flutter. In this case, 
however, flutter was never observed. This was confirmed and elucidated by nonlinear theory [3,4]. The question is “why 
does the same not hold true for external flow?” 
To answer this question, the problem of a cylinder with simply supported ends (“pinned-pinned”) immersed in axial 
flow is re-examined by nonlinear theory, as outlined in what follows. 
 

A WEAKLY NONLINEAR MODEL 
 

Assuming the lateral deflection of the cylinder to be v ~ O(ε), and consequently the axial extension to be u ~ O( 2ε ), and 
presuming that the cylinder centreline is extensible, the equations of motion for a pinned-pinned cylinder in confined 
axial flow have been derived, correct to O( 3ε ). These equations are based on the potential flow derivation of the lift on 
a flexible slender body derived by Lighthill [5], modified by including semi-empirical expressions for the viscous forces 
and, to deal with vertically mounted systems, buoyancy, gravity and pressure-loss related forces as well [6,7]; see also 
Ref. [8] for cantilevered cylinders. These equations may be expressed as 
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L  are nonlinear differential operators, with 1, 2i =  corresponding, respectively, to the predominantly axial 

and transverse motion PDEs. 
The equations are discretized by Galerkin’s method, leading to a set of coupled ODEs, the solution of which is 
complicated by the presence of inertial nonlinearities. Solutions are obtained by Houbolt’s finite-difference method and, 
to a limited extent, using AUTO. 

 
TYPICAL RESULTS 

 
A typical bifurcation diagram is shown in Fig. 1(a). It is seen that this particular system loses stability by divergence at a 
nondimensional flow velocity ,U π  in conformity with linear theory. Coupled-mode flutter, however, associated with 
another loss of stability of the trivial equilibrium, as predicted by linear theory, does not arise: the bifurcation leads to an 
unstable solution. Instead, at approximately the same U as predicted by linear theory, the non-trivial static solution 
becomes unstable by a Hopf bifurcation, leading to flutter. 
Hence, post-divergence flutter does exist, as seen in experiments – unlike the situation with internal flow. The difference 
has been found to be related to the frictional terms. The dynamics of the pipe problem (internal flow) has been shown to 
be independent of frictional forces, since they are exactly counterbalanced by the pressure-loss forces along the pipe; as 
a result, both pressure-loss and frictional forces vanish from the equation of motion [4]. This is not true for external 
flow, in which the mean pressure is largely unaffected by frictional effects on the cylinder. Some of the frictional terms 
give rise to terms in the equation of motion of a different derivative form vis-à-vis the inviscid-force terms and hence the 
internal flow case. These are the terms responsible for eliminating post-divergence restabilization, even in the absence of 
dissipative terms. It is also shown by energy considerations that, for flutter to arise from the trivial equilibrium, even in 
terms of linear theory, the frictional force coefficients in the longitudinal and lateral directions must be unequal [7]; 
although this is generally true, the restriction seems to be peculiar.  In fact, the flutter obtained by nonlinear theory can 
arise also when these frictional coefficients are equal, and indeed this is the case in the results shown in Fig. 1(a). Hence, 
although viscous frictional forces are small and by no means dominant, their effect on the post-divergence behaviour of 
the system is profound. 
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Figure 1. (a) A typical bifurcation diagram; (b) time trace and phase-plane plot for U=21.8 
 

The post-flutter dynamics can be quite interesting, as seen in Fig. 1(a,b). Depending on parameters, the system may 
develop quasiperiodic and sometimes chaotic behaviour. For the results in Fig. 1(a), the system develops flutter via a 
Hopf bifurcation at U 14.6. The resulting limit cycle then becomes unstable via a torus bifurcation at U 15.7, 
indicating that quasiperiodic solutions are possible thereafter. For example at U=17, a time history, and phase-plane and 
power spectral density plots (none shown here) all indicate a quasiperiodic oscillation. 
At higher flow velocities, AUTO reveals the emergence of a number of unstable solutions as the flow is increased; their 
existence makes chaotic motion more likely. Indeed, in the bifurcation diagram of Fig. 1(a), obtained by the finite 
difference method (FDM), it is found that chaotic motions are possible over the range U 20 to 22. The time trace and 
phase-plane plots of Fig. 1(b) show chaotic motions for U=21.8. Similar behaviour has been confirmed to exist over the 
whole range of U 20 to 22. 
 

CONCLUSIONS 
 

The nonlinear dynamics of a slender cylinder with simply supported ends immersed in axial flow has been explored by 
means of newly derived weakly nonlinear equations of motion for the case where inextensibility of the centreline is not 
invoked. It is found that the system loses stability by a pitchfork bifurcation leading to divergence, and the new equilibrium 
at higher flow becomes unstable by a Hopf bifurcation, leading to flutter. With further increases in the flow velocity, the 
dynamics becomes more complex, and quasiperiodic and chaotic solutions have been obtained. The different post-
divergence dynamics for internal and external flow is discussed and the source of the differences identified. 
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