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Summary The main goal of this contribution is the examination of a general framework for finite hyper—elastoplasticity that reflects

the nature of material forces. In particular, we thereby address representations of Eshelbian stress tensors and Eshelbian volume forces
with respect to different configurations, namely the spatial, the material and — what we call — the intermediate setting which allows
alternative interpretation as being referred to a local rearrangement. Deriving these relations, one naturally incorporates connections
which are determined by either the irreversible or the reversible portion of the deformation gradient. The physical interpretation of these
contributions consists in the fact that their skew part can be related to the, say, dislocation density. With these Eshelbian stress tensors
and volume forces at hand, we finally come up with different representations of balances of linear momentum which are carried out
with respect to the spatial or material setting, referring either to the spatial or to the material motion problem. The developed framework
serves as the fundamental outset for the application of the material force method.

ESSENTIAL KINEMATICS

Let the deformation gradient of the (sufficiently smooth) spatial motion prohtesm (X, t) in B;, be decomposed via
Dxy = F = F.-F,. The corresponding tangent map of the material motion prohkers; $(x, t) in By, consequently
readsd,® = f = f, - f, wherebyf = F~', f, = F_'andf, = F_'. For completeness, let appropriate velocity
fields be denoted by = Dy withl = dpv =Dy F- fandV = di@with L=DxV =d;f-Faswellaw = —F-V.

BALANCES OF LINEAR MOMENTUM

The classical format of balance of linear momentum is usually outlined in terms of, e.g., the spatial motion first Piola—
Kirchhoff stress tensodI®. When referring to both, the spatial as well as to the material motion problem (here for the
static case) we end up with different representations which are related via Piola transformations, to be specific

Vx -IT'+by=0, Vgy-ot+b =0 with ot=det(f)II' F' and b, =det(f)by (in TB,)

Vx -X'+By=0, Vo 7' +B;=0 with wt=det(f)X"-F' and B; =det(f) By (inTBy) @
DISSIPATION INEQUALITY
Let the free Helmholtz energy take the format
Yo = Yo(F, Fpp; X) = det(Fy,) vp(F - f,; X) 2

such that the (isothermal) Dissipation inequality of the spatial motion prok[D%‘i‘h,: IT' :D,F — Dyt > 0, reads
D¢ = [II* — Dpipo] : DL F — Dp o : Dy F, = —H; Dy Fp, = —H; |deFp —VxF,-V]>0 3

When placing emphasis on the definition of the force drivihg”, one observes thdtI; takes an almost Eshelbian
format, namely

IT, = Dp tho = 1 D, det(Fy,) + det(Fy) Dp, ¢y : Dp, Feo = ¢ f}, — det(Fy,) F - Dty - f}, (4)
With Dp ¢, = Dpy, : Dp, F = Dpty, - F}, anddet(F,) Dpty, = Dy = IT' which results in
IT, =g f} — det(Fy,) Fg - Dptpy, = o fy, — Fo - ' = [ I, — Fo - II' - Fy]- fL = X0 - f (5)

wherebyF* - IT" - F; = M; characterizes a Mandel stress tensor of the spatial motion problem. With this relation

in hand, it is now straightforward to show that the Eshelbian stressﬂ%ldis the driving force of the plastic velocity
gradientL, = D, F, - fo=—Fy -Dif,, i.e.

Dy = — [T}, - Fy | : [DiFy - f,] = = 5} : Ly >0 ©

In view of the material motion problem, we first define the free Helmholtz energy as

Yr = Py (F, Fp; X) = det(Fyp - f) p(F - f; X) (@)



and second exploit the (isothermal) dissipation inequality of the material motion probj&in: det(f) D¢, in detail
DI =7t dyf — BV —depy = [ —dgpap ] s dof — [BY +0x ]V —dp, e : deFp, >0 (8)

wherebyr® = d v, denotes the material motion first Piola—Kirchhoff stress. Comparing egs.(3) and (8) ends up with the
remarkable result

— [Bi;‘t +0x] -V —dp ¢ : i Fy = — det(f) H; ([deFp —VxFp- V] 9

which we restate via
det(F)dp, ¢ 1 deFp =T, : . F;, and det(F) B = By = —IT\, : Vx F;, — Ox o (10)
With these relations in hand, one observes that the material motion first Piola—Kirchhoff stress takes the format
7' =dgpy = dp, ¥ : dpFy = det(f) I}, : dpFp, = det(f) F}, - IT}, - F* = det(f) X* - F* (11)

For completeness, we finally highlight the material motion Cauchy or rather Eshelby Btreséich enters one of the
balances of linear momentum in eq.(1), as well as the correlated source term

X' = det(Fy) F', - dp b = F' - II', and Bo=—F' by — I}, : VxF, — dxo (12)

Remark 1 Please note that the self forces in eq.(3) dug,tg; are neglected since the free Helmholtz energy does not
depend (explicitely) orx. In fact, this is a consequence of invariance under superposed (spatial, orientation preserving)
Euclidian transformations, i.ex, (¢, Dx @, ...) = ¥p(¢’, Dx¢’,.. ) With ¢’ =2’ = Q - + candQ"' = QL

Remark 2 An alternative derivation of eq.(12) is based on the classical representation of linear momertuniiy* +
by = 0, and the relations- F* - [Vx - IT'| = IT' : VxF —Vx - (F' - IT'),with Vx F" : IT" = IT* : Vx F, and
Vx - (¢ol)=II"':VxF +II, : Vx F}, + 0x 1)y, respectively.

Remark 3 The contribution to the internal material force stemming from either the irreversible or reversible part of the
total deformation gradient allow representation in terms of, e.g., the material motion Cauchy or rather Eshelby stress, i.e
II, : VxF, =[f, - X']: VxF, =X":[f, -VxF,] = X' : I',. Apparently, the skew part &7 x F', or I';,,
respectively, characterize the dislocation density.
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