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Summary The main goal of this contribution is the examination of a general framework for finite hyper–elastoplasticity that reflects
the nature of material forces. In particular, we thereby address representations of Eshelbian stress tensors and Eshelbian volume forces
with respect to different configurations, namely the spatial, the material and – what we call – the intermediate setting which allows
alternative interpretation as being referred to a local rearrangement. Deriving these relations, one naturally incorporates connections
which are determined by either the irreversible or the reversible portion of the deformation gradient. The physical interpretation of these
contributions consists in the fact that their skew part can be related to the, say, dislocation density. With these Eshelbian stress tensors
and volume forces at hand, we finally come up with different representations of balances of linear momentum which are carried out
with respect to the spatial or material setting, referring either to the spatial or to the material motion problem. The developed framework
serves as the fundamental outset for the application of the material force method.

ESSENTIAL KINEMATICS

Let the deformation gradient of the (sufficiently smooth) spatial motion problem,x = ϕ(X, t) in Bt, be decomposed via
DXϕ = F

.= F e ·F p. The corresponding tangent map of the material motion problem,X = Φ(x, t) in B0, consequently
readsdxΦ = f

.= fp · f e wherebyf
.= F−1, f e

.= F−1
e andfp

.= F−1
p . For completeness, let appropriate velocity

fields be denoted byv = Dtϕ with l = dxv = DtF ·f andV = dtΦ with L = DXV = dtf ·F as well asv = −F ·V .

BALANCES OF LINEAR MOMENTUM

The classical format of balance of linear momentum is usually outlined in terms of, e.g., the spatial motion first Piola–
Kirchhoff stress tensor,Πt. When referring to both, the spatial as well as to the material motion problem (here for the
static case) we end up with different representations which are related via Piola transformations, to be specific

∇X ·Πt + b0 = 0 , ∇x · σt + bt = 0 with σt = det(f)Πt · F t and bt = det(f) b0 (in TBt)

∇X ·Σt + B0 = 0 , ∇x · πt + Bt = 0 with πt = det(f) Σt · F t and Bt = det(f) B0 (in TB0)
(1)

DISSIPATION INEQUALITY

Let the free Helmholtz energy take the format

ψ0 = ψ0(F ,F p;X) = det(F p)ψp(F · fp;X) (2)

such that the (isothermal) Dissipation inequality of the spatial motion problem,Dloc
0 = Πt : DtF −Dtψ0 ≥ 0, reads

Dloc
0 = [ Πt −DFψ0 ] : DtF −DF pψ0 : DtF p

.= −Πt
p : DtF p = −Πt

p : [ dtF p −∇XF p · V ] ≥ 0 (3)

When placing emphasis on the definition of the force drivingDtF p one observes thatΠt
p takes an almost Eshelbian

format, namely

Πt
p = DF pψ0 = ψp DF pdet(F p) + det(F p) DF eψp : DF pF e = ψ0 f t

p − det(F p) F t
e ·DF eψp · f t

p (4)

with DF eψp = DFψp : DF eF = DFψp · F t
p anddet(F p) DFψp = DFψ0 = Πt which results in

Πt
p = ψ0 f t

p − det(F p) F t
e ·DFψp = ψ0 f t

p − F t
e ·Π

t = [ψ0 Ip − F t
e ·Π

t · F t
p ] · f t

p = Σt
p · f

t
p (5)

wherebyF t
e · Π

t · F t
p = M t

p characterizes a Mandel stress tensor of the spatial motion problem. With this relation
in hand, it is now straightforward to show that the Eshelbian stress fieldΣt

p is the driving force of the plastic velocity
gradientLp = DtF p · fp = −F p ·Dtfp, i.e.

Dloc
0 = − [Πt

p · F
t
p ] : [ DtF p · fp ] = −Σt

p : Lp ≥ 0 (6)

In view of the material motion problem, we first define the free Helmholtz energy as

ψt = ψt(F ,F p;X) = det(F p · f)ψp(F · fp;X) (7)



and second exploit the (isothermal) dissipation inequality of the material motion problem,Dloc
t = det(f) Dloc

0 , in detail

Dloc
t = πt : dtf −Bint

t · V − dtψt = [ πt − dfψt ] : dtf − [Bint
t + ∂Xψt ] · V − dF pψt : dtF p ≥ 0 (8)

wherebyπt = dfψt denotes the material motion first Piola–Kirchhoff stress. Comparing eqs.(3) and (8) ends up with the
remarkable result

− [Bint
t + ∂Xψt ] · V − dF pψt : dtF p = − det(f) Πt

p : [ dtF p −∇XF p · V ] (9)

which we restate via

det(F ) dF pψt : dtF p = Πt
p : dtF p and det(F ) Bint

t = Bint
0 = −Πt

p : ∇XF p − ∂Xψ0 (10)

With these relations in hand, one observes that the material motion first Piola–Kirchhoff stress takes the format

πt = dfψt = dF pψt : dfF p = det(f) Πt
p : dfF p = det(f)F t

p ·Π
t
p · F

t = det(f) Σt · F t (11)

For completeness, we finally highlight the material motion Cauchy or rather Eshelby stressΣt, which enters one of the
balances of linear momentum in eq.(1), as well as the correlated source term

Σt = det(F p) F t
p · dF pψt = F t

p ·Π
t
p and B0 = −F t · b0 − Πt

p : ∇XF p − ∂Xψ0 (12)

Remark 1 Please note that the self forces in eq.(3) due to∂xψt are neglected since the free Helmholtz energy does not
depend (explicitely) onx. In fact, this is a consequence of invariance under superposed (spatial, orientation preserving)
Euclidian transformations, i.e.ψp(ϕ,DXϕ, . . .) = ψp(ϕ′,DXϕ′, . . .) with ϕ′ = x′ = Q · x + c andQt = Q−1.

Remark 2 An alternative derivation of eq.(12) is based on the classical representation of linear momentum,∇X ·Πt +
b0 = 0, and the relations−F t · [∇X ·Πt ] = Πt : ∇XF −∇X · (F t ·Πt ), with ∇XF t : Πt = Πt : ∇XF , and
∇X · (ψ0 I ) = Πt : ∇XF + Πt

p : ∇XF p + ∂Xψ0, respectively.

Remark 3 The contribution to the internal material force stemming from either the irreversible or reversible part of the
total deformation gradient allow representation in terms of, e.g., the material motion Cauchy or rather Eshelby stress, i.e
Πt

p : ∇XF p = [f t
p · Σ

t ] : ∇XF p = Σt : [fp · ∇XF p ] = Σt : Γ p. Apparently, the skew part of∇XF p or Γ p,
respectively, characterize the dislocation density.

References
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