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NONLINEAR WAVES IN ELASTIC SOLIDS
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Summary We derive evolution equations for the amplitudes of weakly nonlinear elastic waves. Some of these equations are new in
the context of elastodynamics, like e.g. the complex Burgers equation describing the propagation of amplitudes of quasi-shear waves
along the diagonal of a cube in a cubic crystal. New formulas are obtained for the wave interaction coefficients and then are used
in the formulation of the condition which guarantees global existence of a classical solution to the initial-value problem of nonlinear
elastodynamics equations.

INTRODUCTION

One of the open problems in continuum mechanics is to understand nonlinear dynamics of a deformable medium. Mathe-
matical equations which describe macroscopic dynamics of a continuum are systems of balance laws, like e.g. balance of
mass, momentum, energy etc. If we disregard dissipative and dispersive effects, these balance laws become, under natural
assumptions, hyperbolic systems of conservation laws. Understanding the propagation and interaction of nonlinear waves,
that is solutions of these nonlinear hyperbolic partial differential equations, is extremely important and challenging. Non-
linear waves, unlike linear, do not superimpose additively but instead may interact resonantly producing new waves which
have frequencies and wave numbers being linear combinations of the frequencies and wave numbers of interacting waves.
Besides, nonlinearity may cause formation of shock waves. Both of these nonlinear effects:resonancesandshocksfor-
mation imply instability and create difficulties in analyzing the initial and initial-boundary value problems in continuum
mechanics. In this paper we present some new results devoted to nonlinear waves in solids.

PROBLEM FORMULATION

Assumptions
We restrict ourselves to thehyperelasticcontinuum. Bothgeometricandmaterialnonlinearities are taken into account.
We assume that the system of elastodynamics equations ishyperbolic. It is convenient to write our equations as a first
order system of partial differential equations:

ρ0
∂v

∂t
= Div T (F ),

∂F

∂t
= Grad v,

(1)

hereρ0 is a constant density,v is a velocity,T is the first Piola-Kirchhoff stress,F is a deformation gradient tensor, and
Div,Grad denote the divergence and gradient operators in the reference configuration. The body forces are disregarded.
We study the initial-value problem for the system (1) with different data and for different media. Both isotropic and some
examples of anisotropic elastic solids are investigated.

Plane waves
It turns out that in many cases it is enough to look at plane wave solutions of (1). This allows to reduce the technical
difficulties connected with the analysis of a12 × 12 system (1) in three space dimension, to a6 × 6 system (2) in one
space dimensionx (see e.g. [1] or [4]):

∂w

∂t
+ A(w,k)

∂w

∂x
= 0, (2)

where

w =
[

v(x, t)
m(x, t)

]
and A(w, k) = −

[
0 B(m,k)

I 0,

]
(3)

B is a symmetric3× 3 matrix composed of second derivatives of the strain energy with respect to the components of the
1-D strain vectorm, andk is the direction of the wave propagation,I is a3× 3 identity matrix.
Due to the special block structure of the matrixA we may further reduce computational problems of finding the eigen-
system of a6× 6 matrixA to the eigensystem of the reduced3× 3 matrixB.



METHODS

Asymptotic expansion
We use the method of weakly nonlinear asymptotics to the initial-value problem for (2), around the constant statew0, in
the form:

wε(x, t) = w0 + εw1(x, t, η) + ε2w2(x, t, η) +O(ε3) (4)

with η ≡ ε−s(x− λt) being the phase variable, and the constants determining appropriate scaling.
This is a multiple scales perturbation method which allows to derive nonlinear evolution equations for the waves am-
plitudes. We are particularly interested in nonclassical cases whenloss of strict hyperbolicityand\or loss of genuine
nonlinearityoccur which happens in nonlinear elastodynamics. We analyze the evolution equations and we make conclu-
sions about the behavior of the original elastodynamics system.

RESULTS

Evolution equations
We derive evolution equations which are new in the context of nonlinear elastodynamics. This is the case e.g. for a cubic
crystal where thecomplex Burgers equationis a canonical equation for two pairs of quasi-shear waves propagating along
the diagonal of a cube in a cubic crystal (see [1] or [5]). It can be written as a coupled system of two nonlinear equations
with quadratic nonlinearity.

Interaction coefficients
The crucial role in the analysis of interaction of waves is played by the waveinteraction coefficientsΓj

pq (see [2] or [4])
which appear in the evolution equations. These coefficients describe which waves interact and also give information how
strong the interaction is. The interaction coefficients are defined in terms of the leftlj and rightrj eigenvectors of matrix
A:

Γj
pq = lj ∇wA(w) rp rq. (5)

In our joint paper [4] with Robin Young we have derived new formulas for the coefficients (5) and expressed them entirely
in terms of the derivatives of the strain energy. These new formulas allow us to calculate all the interaction coefficients
for arbitrary elastic media. It turns out that the interaction coefficients may give information about stability or instability,
as well as blow up or global existence of the original system of nonlinear elastodynamics.

Null condition
In another joint paper [3] with Ray Ogden we have investigated the so callednull conditionwhich implies global existence
of a classical solution to the initial- value problem for the nonlinear elastodynamics equations. We were able to express
this condition in terms of interaction coefficients and to analyze it for different types of elastic materials.

CONCLUSIONS

We have presented several new results which deal with solutions of nonlinear elastodynamics equations and help in
understanding the problem of propagation and interaction of nonlinear elastic waves.
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