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EXTENDED POLAR DECOMPOSITIONS FOR FINITE PLANE STRAIN
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Summary The concept of unsheared triads of material line elements in a body was introduced by Boulanger & Hayes who showed
that there is a link between these triads and new decompositions of the deformation gradient, called ”extended polar decompositions”,
generalizing the classical polar decomposition. In the present paper attention is confined to finite plane strain so that the deformation
gradient is essentially two-dimensional. The whole range of corresponding extended polar decompositions is presented.

BASIC EQUATIONS

Let a body of material be subjected to the deformation

x = x(X) , xi = xi(XA) , (i, A = 1, 2, 3), (1)

in which the particle initially at X is displaced to x. All quantities are referred to a fixed rectangular Cartesian coordinate
system. A material line element dX at X is deformed into the element dx = FdX, where F, the deformation gradient at
X is given by FiA = ∂xi/∂XA. The right Cauchy-Green strain tensor C, and the left B, are given by

C = FT F , CAB =
∂xi

∂XA

∂xi

∂XB
, B = FFT , Bij =

∂xi

∂XA

∂xj

∂XA
. (2)

If N is a unit vector along a material line element of infinitesimal length L before deformation, at X, then, after the
deformation the length of the element at x is λ(N)L, where λ(N), called the “stretch along N”, is given by

λ(N) = |FN| = (N · CN)1/2 = (CABNANB)1/2 . (3)

Similarly, if n̂ is a unit vector along a material line element of infinitesimal length l after deformation, at x, then, before
the deformation the length of the element at X is λ(n)l, where

λ(n) = (n̂ · B−1n̂)1/2 = (B−1
ij n̂in̂j)1/2 . (4)

If n = FN, so that n, along n̂, is the element into which N is deformed, then λ(n) = 1/λ(N).

UNSHEARED TRIADS

Unsheared triads consist of the three material line elements at X along the unit vectors M,N, P, such that the three pairs
of material line elements along (M,N), (N,P) and (P,M) are unsheared, i.e. suffer no change in angle. Recently, it
has been shown[2] that, in any deformation, there is an infinity of unsheared triads at X.
The conditions for M, N and P to form an unsheared triad are (e. g. Truesdell & Toupin[3])

M·CN = λ(N)λ(M)M·N , N·CP = λ(N)λ(P)N·P , P·CM = λ(P)λ(M)P·M . (5)

Assuming that an unsheared pair (M,N) is known, and considering only non coplanar triads, a formula for P forming
with M and N an unsheared triad is[2]

pP = {CM − λ−1
(N)(detC)1/2M} × {CN − λ−1

(M)(detC)1/2N} , (6)

where p is a scalar factor such that P · P = 1.
Thus, in general, for any chosen unsheared pair (M,N), there is a unique unit vector P (by “unique”, we here mean
unique up to a ± sign) such that (M,N,P) is an unsheared triad. In other words, if an unsheared pair of material line
elements is given at a point X, then, in general, a unique third material line element at X may be found such that the three
material line elements form an unsheared triad.
However, special cases may occur because for special choices of the unsheared pair (M,N), (6) yields pP = 0, or pP
along M or N (see [2] for details).

EXTENDED POLAR DECOMPOSITIONS

Let M, N, P be unit vectors along the edges of a (non coplanar) unsheared triad of material line elements, and let
m = FM, n = FN, p = FP. It has been shown [2] that F, the deformation gradient, may be written

F = QG = HQ , (7)



where Q is a proper orthogonal tensor(QQT = 1, detQ = 1), and G, H are given by

G = λ(M)M ⊗ M∗ + λ(N)N ⊗ N∗ + λ(P)P ⊗ P∗ , (8)

H = λ−1
(m)m ⊗ m∗ + λ−1

(n)n ⊗ n∗ + λ−1
(p)p ⊗ p∗ . (9)

Here, (M∗,N∗,P∗) is the triad reciprocal to (M,N,P), and (m∗,n∗,p∗) is the triad reciprocal to (m,n,p). The
decompositions (7) have echoes of the classical polar decomposition F = RU = VR, in which R is proper orthogonal
and U, V are positive definite symmetric. They are called “extended polar decompositions”[2]. Because there is an
infinity of unsheared triads, there is an infinity of such “extended polar decompositions”. Also we note that C = GT G
and B = HHT .

PLANE STRAIN

Here we consider plane deformations

xα = xα(XΛ) , x3 = X3 , (α,Λ = 1, 2) . (10)

Let F′ denote the two by two deformation gradient F ′
αΛ = ∂xα/∂XΛ, and C′, B′ be the corresponding two by two right

and left Cauchy-Green strain tensors.
We now restrict our attention to unsheared triads M, N, P consisting of material line elements along two vectors M, N
in the X1X2–plane, and the vector P = K = (0, 0, 1) along the X3–axis. Thus, (M,N) may be any unsheared pair in
the X1X2–plane. There is an infinity of such pairs : if N is given in the plane, there is, in general, a unique companion
M forming with N an unsheared pair[1]. Here, we may obtain the companion M of a given N by using (6), because M
is the third edge af an unsheared triad whose first two edges are N and P = K. If Ψ denotes the arbitrary angle that N
makes with the X1–axis, it follows that (omitting a scalar factor in M)

N = (cos Ψ, sin Ψ, 0) , M = ([detC1/2 − C22] sin Ψ − C12 cos Ψ, C12 sin Ψ − [detC1/2 − C11] sin Ψ, 0) . (11)

Then, using (8) with P = K = P∗, and retaining only the components in the X1X2–plane, we have

G′ = λ(M)M ⊗ M∗ + λ(N)N ⊗ N∗ . (12)

We give explicit details in terms of the angle Ψ.
Similarly, using the angle φ that n = FN makes with the x1–axis, and the components of B−1, an expression may be
obtained for H′ :

H′ = λ−1
(m)m ⊗ m∗ + λ−1

(n)n ⊗ n∗ . (13)

For each given Ψ (or φ), we have the corresponding two by two decomposition

F′ = Q′G′ = H′Q′ , (14)

where Q′ is a two by two proper orthogonal tensor. It is a two by two “extended polar decomposition”. The results are
illustrated in the case of simple shear.
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