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Summary By starting from the truncated power expansions given at a number of discrete real points we establish the general
inequalities for the effective transport coefficients @ of macroscopically isotropic two phase media.The inequalities obtained provide
the new upper and lower bounds on @ the best with respect to the available power series coefficients. For specific cases these new
bounds reduce to the classical ones due to Wienner and Hashin-Shtrikman. They are also coincide with the estimations of Bergman

[1] and Milton [3] derived for the fitting problem. Many illustrative examples show the usefullness of the results obtained..

FORMULATION OF THE PROBLEM

It is well-known that the effective transport coefficient of a two-phase medium with macroscopic isotropic
symmetry has a Stieltjes integral representation:

filw) = S = [ B dyy () > 0, v = £ -1, Q) = #L fi(-1) <1 M

Here g.¢ denotes the effective modulus of the composite materlal, while g1, g2 describe the physical properties
of its constituents. Assume that the truncated power expansions of fi(z) at @1, g, ..., x5, —1 be given, where
-1<z;, j=12,..,N,

fi(@) = fi(-1) + O(z+1); f1(—1) <1; fi(z) = Zfial cij(x— ;) +O0((x —x)P), 5=1,2,.,N. (2

The following abbreviated notation for the truncated power series (2) will also be used:

fl('r) = fl‘g(x - $) + O(.CI? - w)p} T = [-7717-1'2, "'7'TN7_1]7 b= [p17p27 -y PN, ]-]7 fl(_l) <1 (3)

The aim of this contribution is to establish, starting from the power expansions (3), the general inequalities for
the Stieltjes function fi(x), and next via (1) the best upper and lower bounds on the effective coefficient Q(x).

THE METHOD OF SOLUTION

In the first step the inequality f1(—1) < 1 is replaced formally by the equality f1(—1) = 1, cf. (3). The input
data (3) transform to

fl(x) - f1|§:(w - IL') + O(Z - x)p7 T = [I17w27 sy TN, 71] , P = [p17p27"'7pN7 1] ’ fl(il) =1 (4)

Next by introducing Pp = 0, P; = Zgzl pi, 7 =1,2,..,N; P = Py+ 1 we expand the original Stieltjes
function f1(z) given by (1) to the new Stieltjes one f,(z)

_ fro+1(z1) o Frgte (1) N o (1)
fPoJrl(l') - 1+(mfgl)f1,0+2(m)7 fPo+2(I) = TH(z— gl)f1—0+g, @ o fPl( ) = —1+($*$]1)f1>1+1(cc)’
fr T Py 42(x: F, (-
Tr(0) = mEESEm fre ) = Gesey - In @) = metir

T TH@—2) (@)’ (5)

fPN 141 (zn) (zn)

fPN—],JFl(I): 1+(z—zN— l)fPN L +2. ()2 fPN( ):mz fP( ):fp(—1)+0($+1)

It is convenient to rewrite (5) as follows

fiw) = fiB(x, fo(x)) = f022 0 (2, £ (2)), where f,(2) = [( 928 and f,(-1) =w,.  (6)

For any values of f,(z) € [0, wp], z € [—1, 00|, the continued fraction expansion fi2(z, f, (x)) satisfies the input
data (4). Let us introduce now the function Fp(z,u) estimating fi(z) in the following way

fl(w) € {FP(SE,U), —1<u< 0}7 where FP(I7U) = 1p],,p2,---,PN,1 (SE, wp (1 +11‘))7 (7)

1,%2,.., N, 1

The sign of the first derivative of Fp(z,u) with respect to u, obtained after lengthy calculations is equal to:

sign(%(m’“)) =1, =P, o = ()N 1l <a<a, r<a<ap,---, ay <x <00, (8)

where P; = Zgzl pi, j=1,2,..,N; P = Py + 1. From (8) the inequalities follow:
(-1)° Fp(z,—-1) < (=D! fi(z) < (—=1)* Fp(z,0) if —1<az<ua,
(DPFpe 1) <(DPFA@ S (DPHES(@0) i <x <o, ©)

(-1 Fp(z,—1) < (1) Ffi(2) < ()P Fp(2,0) if ay <2< oo



The functions Fp(z,0) and Fp(x,—1) are the multipoint Padé approximant [mp/np|(z) and [mp_1/np_1](x)

1., mp
e j“jg:;;f”,’ ,mp=P—1—np,np=E(P/2), P=1 p;+1 Relations
(9) provide the fundamental inequalities for the multipoint Padé approximants to the Stieltjes function f;(x)

representing via (1) the effective transport coefficient @ (z) .

FUNDAMENTAL INEQUALITIES

Let Lr(z) = Z;\le p;H(x — ;) determining the total number p; + pg + ...ps of the coefficients of the power
expansions of fi(z) available at points x1, z2, ...,xs < x be given, see (4). By introducing the piecewise
continnous function Mg(x) = (Lg(x) if —co < 2 < 0 or Lg(xz) + 1 if —oco < z < 0), the relations (9)
can be easily transformed to the following inequalities for the multipoint Padé approximants z[mp/ng] and
x[mpy1/nre1] to the effective transport coefficient Q(z) — 1, cf. (1),

(*UMR(:E)SU[mRﬂ/nRH}(x) < (*DMR(:E) (Qz)—1) < (*DMR(CC)SE[WR/”RK@: z € [~1,00). (10)

to f1(z), where [mp/np|] =
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Fig. 1: Three- and four-point Padé approximants to the function Q(z) — 1 = zf1(z), fi(z) = w.
representing the bounds on Q(x) — 1 predicted by the fundamental inequality (10). Here 4 = —1, 23 =0, 23 =
999, z4 = 999999.

Inequalities (10) provides the best upper and lower bounds on Q(x) — 1 as a function of Lg(z) depending on
the given numbers of coeffcients of power series (4). The multipoint Padé approximant bounds given by (10)
generalize all previous bounds reported in the literature, cf. [1,2,3,4]. From that point of view the general
bounds (10) are new.

PARTICULAR CASES
From Q(z) =1+ O(z), Q(z) = Q(—1) + O(x + 1), Q(—1) < 1the elementary bounds follow.

(=1)"P (1 +2) < (-1)"PQ2) < (=), & € [-1,00), (11)
For Q(z) =1+ pyz + O(2?), Q(z) = Q(—1) + O(x + 1), Q(—1) < 1 the Wienner bounds result.

(~1)2 (14 £227) < (-12FQ(a)

IN

(=)@ (1), @ € [-1,00), (12)
For Q(z) =1+ pyz + 0.5050,2% + O(23), Q(z) = Q(—1) + O(z + 1), Q(—1) < 1 the H-S bounds are obtaine
<

x . > n:z T T 5T
(—1)*) (14 EERR ) < (—1)MQ() < (1)) (14 8855 ) v e [Floo). (13)

Here ¢, and ¢, denote the volume fractions of the first and second component of the two-phase composite.

CONCLUSIONS

By using special multipoint continued fraction technique, from several truncated power series we have derived
the general inequalities for the multipoint Padé approximants to the effective transport coefficients ( dielectric
or diffusion constants, magnetic permeabilities, thermal or electrical conductivities) of two-phase media. Those
inequalities are new and provide the best upper and lower bounds on ()(z) over the entire class of rational
functions. Note that they are obtained in a unified and coherent form as a function of Mg(z) depending on
given numbers of coeffcients of the power expansions of Q(z) only. Moreover, they generalize all previously
known relevant bounds, cf. [1,2,3,4].
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