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Summary In this paper we consider the problem of the �ow of some non-newtonian �uids (second grade, third grade and

second order �uids) in a falling cylinder viscometer. If the problem for a second grade �uid is similar to the corresponding

problem for linear viscous �uids, largely discussed in Cristescu and all (2002), the other two problems are essentially

di�erent. The di�erences (appearing in the velocity �eld and shear stress component) are put into evidence. More, the

formula of the shear viscosity for a third grade �uid can be interpreted (for instance) as a relation for the determination

of the sum β2 + β3 of constitutive moduli (and leads, in the case of the law obtained by Fosdick and Rajagopal (1980),

to the complete determination of constitutive moduli).

POSITION OF THE PROBLEM

The problem of the falling cylinder viscometer �lled with a linear incompressible viscous �uid was recently
analyzed in Cristescu and all [1]. Here it was presented the theory of this apparatus, some experiments and
obtained an analytical solution, for the �ow problem and a formula for the shear viscosity (which, in this case,
coincides with the kinematic viscosity). An extensive bibliography is also presented and discussed in this paper
and we refer to this one. However many biological �uids have a signi�cant non-newtonian behaviour and for
this reason we consider here the problem for some classes of non-newtonian �uids like: second grade, third grade
and second order �uids. We rely on the description of the apparatus made in [1]. We emphasize here that the
radius of the falling cylinder R1 is of the order of 10−4 m, while the radius of the outer (�xed) cylinder, R2

is: R1 < R2 < 10−3 m. The velocity of the falling cylinder is of the order of 10−4 − 10−3 m/s, l � h, where l
is the length of the falling (inner) cylinder and h is the length of the outer cylinder. We also remind that, in
viscoelastic �uids, the shear viscosity is more signi�cant than in a linear viscous �uid (and generally depends on
shear rate). We remark on the one hand that, for second grade �uids, the problem is similar to those described
in [1] for a linear viscous �uid and, on the other hand that, for third grade �uids, as well as for second order
�uids, the problems are completely di�erent. The existence and uniqueness of the solutions are proved and
numerical calculations are performed in order to (graphically) compare the velocity �elds and the shear stress
components. A new formula (after our knowledge) which connect the shear viscosity, the plateau viscosity and
the constitutive moduli β2, β3 is obtained, for a third grade �uid (which is useful in order to evaluate the sum
β2 + β3). We underline (see also [1]) that the measurements must be made into the "central" part (in respect
to the length of the outer cylinder) of the �ow such as to provide for V1 a constant value during the experiment
(see [1] Fig.2). The admissible velocity �eld considered here is (in cylindrical coordinates)

vr = 0, vθ = 0, vz = V1f(r), r ∈ [R1, R2]. (1)

and the boundary conditions are

vz(R1) = V1, vz(R2) = 0. (2)

From this point we suppose that (due to the fact that h � l, the discussions from [1] and the introduction to
[2]) the pipe (outer �xed cylinder) has of in�nite length and we choose the reference (cylindrical) system with
the z-axis oriented in the same sense as the acceleration of gravity. As the considered motion is viscometric
Cauchy's stress tensor will be given by T ≡ −pI + T(A1,A2) and we consider the following formulae for
second grade (see Dunn and Fosdick [3]), third grade (see Tigoiu [4], with the mention that A3 = 0, or Fosdick
and Rajagopal [5] for a di�erent formula) and second order �uids ([3])
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Here, for the formula for a second order �uid, we have employed (for the choice of shear viscosity expression
(3)4) the graphs from Coleman, Markowitz and Noll [6], for a polyisobutylene in decaline solution (13%) in
order to obtain A = 5/64. η0 can generally be considered as the plateau viscosity.



SOLUTIONS FOR THE BOUNDARY VALUE PROBLEM AND EVALUATION OF SHEAR VISCOSITY

Introducing the admissible velocity �eld (1) into (3) and the resulting formulae into the balance of linear
momentum equations we obtain (adding also the boundary conditions (2)) the corresponding �ow problems.
For the second grade �uid, the solution of the boundary value problem is analytically obtained and for the
dimensional velocity �eld and for the shear stress component we have
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where ρl is the mass density of the �uid. It is simply to remark that in this case the shear viscosity
η = (µ) = const. (unfortunately) and the solution is slightly di�erent from the relation (3.15) in [1].
For a third grade �uid (3)2, a �rst integral for the �ow problem leads to the determination of the nondimensional
shear stress by
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and the unique solution of equation (5) has the form
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where we have denoted C ≡ C(r) ≡ ar +
C1

r
, a ≡ 1

2Reσz and β ≡ 2(β2 + β3)V
2
1

µR2
1

. The solution of (6) was

obtained by numerical integration and graphically compared with the corresponding solution for a second grade
�uid (or a linear viscous �uid). From the formula for the shear viscosity, computed for r = R1, for instance,
we obtain the relation

η = µ(1 + βf ′2(1;β)), (7)

for the determination of β, once the plateau viscosity, η0, is known (here η0 = µ).
For a second order �uid (3)3,4, the �rst integral (giving the shear stress component) is
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This equation can be written in �rst approximation as
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On a part this last equation (by combining with a shooting method) can be numerically solved (and the solution
is graphically compared with those for a third grade and second grade �uid). On an other part, restricting
ourself to the �rst approximation of (9), we obtain a forth order equation with an unique negative solution
(f'<0), which �nally is again numerically computed.
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