GENERALIZED CONTINUUM MECHANICS : THREE PATHS
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Summary The material framework is considered to place in evidence three essential ways of generalizing standard continuum
mechanics, the latter being the theory of one-component simple materials (after W.Noll) with symmetric Cauchy stress. The
three possible paths to generalization are (i) the loss of the Euclidean nature of the background material manifold, (ii) the loss
of validity of Cauchy's construct of the notion of stress and (iii) the loss of symmetry of the latter. Special attention is paid to
the consequences of these different losses on the canonical balance of momentum and its moment, whose ontological status
is the same as the balance of energy, i.e., they concern the whole physical system under consideration (in particular, all
degrees of freedom simultaneoulsy). Because of (i), these considerations of necessity are in that material framework which is
the realm of configurational forces and forces driving structural defects.

BACKGROUND

With the advent of homogenization techniques, the inclusion of metallurgical -and other - microstructures, the production of
artificial materials with a controlled microstucture, and a growing interest in continuum mechanics at a smaller scale, the
question of what is a generalized continuum comes up naturally. Here we would like to ponder the general notion of
“ generalized continuum  in the light of our thirty five years involvment in the field and the more recent developments in the
so-called “ material ” mechanics of materials where the Eshelby stress is the main force-like ingredient (a longer paper in
French is Ref.[1]).

What is to be understood by “ generalized continuum mechanics ” ? It obviously is dangerous, and somewhat preposterous to
define the degree of generalization of a theory. For instance, many mathematicians and engineers called “ generalized Hooke
law ” the constitutive equation for a linear , homogeneous but anisotropic elastic material. we shall all admit that this is a
very weak generalization. The same holds true of the Hooke-Duhamel stress constitutive equation in linear thermoelasticity.
The situation still is of the same type is the now again fashionable (because of the consideration of so-called smart materials)
linear theory of piezoelectricity since not only the required anistropy can be dealt with easily but many problems can be
reformulated using a four-dimensional “ displacement” (being the classical one to which is adjoined the electrostatic
potential). This is true because of the smallness of the electric fields involved. The situation is totally different when one
deals with heterogeneous elasticity where a characteristic length introduces itself in the formulation, rendering dynamical
wave-like problems dispersive. In all these cases, though, the Cauchy stress tensor remains symmetric.

THE THREE PATHS

The first temptation to call a continuum theory really generalized comes with the consideration of a non-symmetric Cauchy
stress tensor, e.g., when the ponderomotive couple due to electromagnetic fields in finitely electrically polarizable or
magnetizable bodies is no longer neglegible. This is documented in detail in Ref.[2] as well as the much more complicated
case when electric and magnetic degrees of freedom are associated with a corresponding microstructure (due to electric or
magnetic dipoles, such as in ferroelectrics and ferromagnets of different types, etc). Note only is the Cauchy stress tensor no
longer symmetric but then the basic Euler-Cauchy equation of motion (balance of physical linear momentum) is coupled to
additional local balance equations related to these microstructures. This introduces the notion of additional degrees of
freedom, albeit of a nonmechanical nature. Clearly, the introduction of additional degrees of freedom of a mechanical nature
a each material point will produce the same type of generalization. This occurs when one recognizes that the kinematic-
deformation modelling of a material point X by the usual degree of translation (the “ displacement ” giving rise by spatial
differentiation to the notions of deformation and classical rotation) is not sufficient to describe the clearly present
microstructure of many materials. The relevant concepts go back to Duhem and the Cosserat brothers, but they were revisited
in the 1960s by many authors (Aero and Kuvshinskii, Palmov, Grioli, Eringen and Suhubi, Toupin, Green and Rivlin,
Mindlin and Tiersten, W.Nowacki, etc). Two types of approaches are to be put forward, one attributing a set of directors ,
rigidly or nonrigidly attached to one another, to each material point (the Duhem-Toupin-Ericksen way) and another one
introducing at each material point X a micro-deformation of a purely rotating type (the Cosserat or micropolar model) or of a



general deformation type (so-called micromorphic model of Eringen et al [3]). All these models are conveniently introduced
without ambiguity by using the principle of virtual power as the essential tool of formulation [4]-[5].

Two other steps of going further toward generalization consist in considering first a weak, and then a strong nonlocality in
the internal force effects of which stress is an example. The first of these consists in introducing successive gradients of a
field as a priori independent field variables at the same point X (the idea of a Cauchy expansion of a field). This in principle
is applicable to all fields but the displacement is that field considered in the purely mechanical case. Noll’s notion of a simple
material is lost as well as the traditional Cauchy construct for the introduction of the stress notion [6]-[7]. The situation is
worst for a strongly nonlocal theory in which the mechanical response at a material point X theoretically depends on what
occurs kinematically at all points in the body [8]. The argument is strictly valid only for an infinite body, so that in truth the
notion of Cauchy stress itself is lost. Finally, in all previous examples we assumed that the material manifold is a classical
Euclidean one. This hypothesis may be given up by choice or necessity in the presence of continuous distributions of defects
which hinder the continuity of the displacement field. This is the Bilby-Kroener-Noll-Wang-Epstein-Maugin-Rakotomanana
(and others) way.

From the above, putting now the arguments in the logical order, we can propose a definition of “ generalized continuum
mechanics ” : We say that we have such a mechanics whenever one of the following three basic tenets of classical continuum
mechanics is no longer true : (i) the background material manifold is Euclidean, (ii) Cauchy’s construct of the notion of stress
holds true, (ii) Cauchy’s stress is symmetric. Because of point (i) above the present contribution examines consequences of
the loss of anyone of the hypotheses directly on the material manifold, where the appropriate stress measure is Eshelby's
material stress tensor and this is the realm of all kinds of true or pseudo material inhomogeneities, as emphasized in many
recent works [9]-[11]. Special attention is paid to the local canonical balance of momentum and its moment that accompany
the balance of energy. All considerations are developed in comparison with the somewhat standard purely elastic, although
nonlinear anisotropic, inhomogeneous case. Not only does this capture all the fields introduced but, as is known, it also
permits constructive considerations in the theory of field singularities.
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