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Summary Recently, growing interest in magnetoelastic solids has motivated a renewed interest in
electromagnetic continua with particular reference to large magnetoelastic deformations. We derive
governing equations of equilibrium and constitutive laws expressed in either Lagrangian and Eu-
lerian form. The equations are then applied to the solution of a prototype boundary-value problem.

MOTIVATION AND BASIC EQUATIONS

Recently, growing interest in the mechanical and the electromagnetic properties of composites
consisting of an elastomeric matrix and a distribution of ferrous micron-sized particles embedded
within their bulk has been observed. This interest is motivated by newly developed engineering
applications, which involve, for example, sensors, vibration absorbers, and controllable membranes
for use in civil and automotive engineering. See, for example, Ginder et al. [1] and Carlson and
Jolly [2]. These materials have mechanical properties that can be altered rapidly by a change in
the magnitude or direction of an applied magnetic field. The magnetic response is optimized by
distributing within the bulk matrix particles with a high magnetic saturation, such as an alloy of
iron, and volume fractions between 0.1 and 0.5. The choice of the matrix material is based on
its thermomechanical properties and, for example, silicone and other elastomers are found to be
suitable materials.

In this talk we first summarize the basic equations governing the magnetic field and its interaction
with a deforming continuum. To derive the constitutive properties of the magnetoelastic composite
we assume the existence of a free energy function, which depends on a deformation or strain measure
in addition to a magnetic field variable. Following the description of nonlinear magnetoelastic
deformations of elastomers given in recent papers by the present authors [3, 4, 5], we select the
magnetic induction vector B and the deformation gradient tensor F as the basic variables and write
the free energy ¥ = ¥ (F,B). Applying the Clausius-Duhem inequality, expressions for the Cauchy
stress tensor o (in general non-symmetric) and for the magnetization vector field M are derived.
Secondly, we provide a Lagrangian counterpart of the free energy formulation such that ¥(F,B) =
®(F,By), where By is the Lagrangian vector field corresponding to B. The free energy ® is used to
derive expressions for the symmetric total stress tensor 7 for both compressible and incompressible
materials, with the appropriate specialization for isotropic material response. The total stress tensor
7 includes, in addition to the Cauchy stress o, the so-called Maxwell stress. The specialization of
these equations to the situation where there is no deformation but only an applied magnetic field
is considered and it is pointed out that the magnetic induction By generates a residual stress in
the material.



Then, we introduce an augmented free energy formulation, denoted 2 = Q(F, By) and defined, for
incompressible materials, by
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where pg is the mass density in the reference configuration, the constant g is the magnetic perme-
ability in free space and ¢ = FTF is the right Cauchy-Green deformation tensor. This allows the
magnetoelastic equilibrium equations to be written in a very compact form.
For incompressible materials, the total stress 7 can be written in the simple form
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where p is a Lagrange multiplier associated with the constraint det F = 1. The other relevant
Eulerian quantities are given by
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where H is the magnetic field.
The corresponding Lagrangian equations are the nominal stress T = F~!7 given by
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and the magnetic field
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Finally, the theory is applied to the solution of a prototype boundary-value problem. We consider
the problem of inflation and extension of a circular cylindrical tube under internal pressure and
axial load. A closed-form solution for this problem is obtained for a particular choice of energy
function.
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