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ummary

We study deformations of mesoelastic materials diglay different types of imperfections with ital size of im. Stress-strain
relationships of these materials depend on theepsireg history and exhibit common behaviour, indgdon-linearity, hysteresis, etc.
We focus our study on the continuous distributibsiogularities in the deformation field, which atescribed in terms of dislocation
densities and fluxes. We define the mass mesogi¢asgor and deduce the constitutive relationsbipiéen the dislocation current and
the linear mesomomentum. Based on the modificatfdReach-Koehler formula we propose the constitutelationship between the
line mesostress tensor and the dislocation defi$igse constitutive relationships allow us to matiglsses in mesoelastic materials.

INTRODUCTION

Deformation stress in elastic materials mayeapmot only by the actions of external forceshemt but also because
of singularities of internal structure. This papepresents our study of the role of dislocations a®urce of stress
fields. Experimental studies of deformations ok&tamaterials with imperfections of a typical s@elym indicate that
their stress-strain relationships depend on thegsging history and show a common behaviour, extipinon-
linearity, hysteresis, etc [1]. We assume that eéhesperfections play a significant role in the depenent of
singularities of deformation gradieft.

The continuum of dislocations is described emt of the dislocation density tenset = V x 3. The balance
equation of the Burgers vector in defect dynantit¥ J +0,0 =0 relates the dislocation current (the flux density)

and the dislocation density [2].
Peach and Koehler’s study of the action oflastie stress field on a dislocation led to theadigry that the force

acting on a unit length of a dislocation line Heas following form:f' = €7, S b, where=*" is antisymmetric in

the k and | indiced,, is the tangent vector to the dislocation loBfi the elastic stress, abds the Burgers vector [3].

DYNAMICS

The main point of our consideration is to ré\aeatress response to the continuum of dislocatiéfe associate this
response with, as we call it, mesostress, whideaiin an elastic body in addition to the elagtiess.

Didlocation Mass and Linear M omentum of Dislocation
We evaluate the mass density vector of a disioe as the following:

10i =4prefﬂijdxjy
L

where 0, is the material mass density in the referenceigorstion.
Also, we use the Kosevich formula [1] for tfislocation current

Jik :gilmTZbk\/mé(g)7 (1)

whereV is the velocity at a given point on the dislocatiime, (&) is a two-dimensional delta function, ah a two-
dimensional position vector from a given point ba tlislocation axis in a plane perpendicular totéimgent vector.
In order to account for the relations betwewrtia of the dislocation movement and the disiocatnass, we define

,Ymn :pn\/mé(g)

Then the Kosevich formula (1) takes the follogvform:
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Continuous distribution of dislocations
In accordance with our point of view, mesoétashaterial incorporates a continuously distributeetwork of
dislocations. For this material we propose theofgihg generalization of (1):

+pJ



Here we call the tensoy the surface linear mesomomentum gne L' as the dislocation mass mesodensity tensor

in the continuum.
The mesomomentum of inertiafor any region U on a body B can be written ax fwer closed surfacé R

bounding this volume
o= vas= [ vav
ou U

Here vector p we call linear mesomomentum. Baknce of mesomomentum for smooth functions andafy
portion U of a body B provides conditions for foemulap=V - ~ .

Line M esostress

We consider a line with a unit normal crosstisacarea. We call a force acting along the line a mesoforce and
define the line mesotraction to bedP/dl. For the mesocontinuum of these lines we postafeexistence of the line
mesostress tensor | (X,t) with the following propertyf=I -t and define surface mesostress terGer VI [4]. In
the following consideration we regard these lingeslialocation lines in elastic body.

Line Mesostressfor Continuum of Dislocations
We choose the following generalization of Peacleder formula for the continuum of dislocatiohsK (S) - a

MESOELASTIC MODEL

Here we assume that the mesostresses playatimerate in the response to the material deformatid-or this case
we combine the following mesoelasticity system:

VxI+9,y=C, V.~=p
VXJ+8tOL =0, V.a=0

with the constitutive expressions:
I=K(S) o andy=p(cx)-J

Statics
We consider the statics of an irregular stmects a steady state. Thus, we assumeHth@f p=0 andy=0. Then the
system of equations is reduced to the followingrfor
Vx(K(S)-a) =C V-a=0
Taking into account thak=Vxf3 we transform the system above, in the case oftanti§(S) and V - 8=0, to
the integral equation:

B(y)=- K(5) [ Gxy)CaV
B

If we assume that an unloading of the stressesoelastic body B is pure elastic then the mastelstress C is
responsible for the existence of the residual stire¢hat body.

CONCLUSIONS

The presented constitutive theory for matedaformations describes the constitutive relatigmsbétween the
dislocation current and the linear mesomomentunis Télationship is based on the generalizationhef Kosewich
formula. Based on the generalization of the Peashhier formula, we propose the constitutive retati@tween the
line mesostress tensor and the strain singuladiéesity. These constitutive relationships havevedd us to model the
stress of the mesoelastic materials.
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