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Summary A non-linear, non-hysteretic oscillator under a random train of impulses driven by a class of renewal processes is considered.
The original state vector of the oscillator is augmented by a number of auxiliary state variables. The augmented state vector is governed
by two independent Poisson processes, hence the original non-Markov problem is converted into a Markov one. Response mean value
and variance are obtained from the equations for moments and are verified against Monte Carlo simulations.

INTRODUCTION

Random pulse trains are valid models of actual excitations processes such as e.g. irregular trains of shocks and impacts.
If the dynamic system is acted upon by a non-Poisson distributed train of impulses and/or the pulses have general shapes,
the state vector is not a Markov process. Various techniques have been developed to convert original non-Markov pulse
problems into Markov ones, for example for trains of impulses driven by Erlang renewal processes [1], or for sine half-
wave Poisson-driven pulses [2]. A random train of impulses with interarrival time being a sum of two independent,
negative exponential distributed random variables with different parameters (generalized Erlang renewal process) was
dealt with in [3]. The excitation process was exactly expressed in terms of an auxiliary variable, governed by a stochastic
equation driven by two independent Poisson processes with different parameters.

In the present paper a non-linear, non-hysteretic oscillator under a random train of impulses driven by a renewal process
is considered. The class of renewal impulse processes considered is obtained by multiplying the impulse magnitudes of
an Erlang renewal impulse process by the values of an intermittent, zero-one auxiliary stochastic variable. This variable
is governed by a stochastic differential equation driven by two independent Erlang renewal processes, each of which is
exactly expressed, with the aid of a set of auxiliary variables, in terms of a Poisson process. Thus the augmented state
vector, consisting of the original state vector and of auxiliary variables, is driven by two independent Poisson process, and
becomes a Markov process. The Ito’s differential rule is used to derive the differential equations governing the response
statistical moments. The usual and special cumulant-neglect closure techniques are used to truncate the hierarchy of
moments equations. The mean value and variance of the response are obtained by numerical integration of a suitably
truncated set of moment equations and verified against Monte Carlo simulations.

STATEMENT OF THE PROBLEM

Consider a non-linear, non-hysteretic oscillator governed by the equation
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Wheref(X(t),X(t)) is the function of the instantaneous values¥ft) and X (¢) and the stochastic excitation is the
random train of impulses whose arrival timgs; are driven by the renewal proceR$t). Sample functions of count-
ing processes are assumed herein to be left-continuous with right limit. The impulses maghijygdese given by
independent random variables with common probability density function.
The renewal driven train of impulses in (1) may be represented as follows
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where the arrival times; are driven by an Erlang renewal procdss(t) with parameters andk andZ(t;) is a value at
t;,— of an intermittent, zero-one stochastic variablg) governed by the stochastic equation

dZ(t) = (1 — Z)dR,(t) — ZdR,(t), 3
whereR,,(t) is an Erlang renewal process with paramejeendi. The Erlang procesE , (t) andR,,(t) are assumed to
be independent. The variahft) equals zero except in the time interval between the firg{t) driven event occurring
after anR, (t) driven event and the first subsequéji(t) driven event. In other words7(¢;) is zero at all instants;
driven by R, (t), except the first ones occurring aftBr, (t) driven events. The equation (3) is a generalisation of an
equation driven by two independent Poisson processes given in [4].

The increment of the underlying renewal proc&gs) equals, with probabilitl, dR(t) = Z(t)dR ,(t), which follows
from the fact that both counting processes are regular (the increments only takelvatugs

An Erlang renewal proces3,, (t) (« = p,v) may be expressed in terms of the Poisson prodesg) (a = u,v) at the
expense of introducing auxiliary variables, for any integer paranteter [5]. For any« the following replacement is
valid



dRo(t) = pa(t)dNa(t), o= p,v 4)

where thep, (t) is a variable which only takes valuésor 1 and is expressed in terms of a number of further, discrete-
valued, auxiliary variables which are governed by stochastic differential equations driven by the Poisson process.

SOLUTION TECHNIQUE

The augmented state veci(t) consisting ofX (t), X (¢), Z(t) and other auxiliary variables is governed by the stochastic
equation

aX (1) = ¢(X (1))t +b(P(t), X(1))aN(p), dN(t) = { jﬁ;ﬂg; } , (5)

henceX(t) is a non-diffusive Markov process.

Differential equations governing the response moments (statistical moments of the state VAriglase obtained from

the generalized I1t6's differential rule [5], [6]. For the non-linear oscillators with tefr(]X(t),X(t)) which are poly-

nomials inX (t) and X (t), the right-hand sides of the equations for moments involve the unknown expectations of the
non-linear transformations of state variables . The equations for moments form an infinite hierarchy and cannot be directly
solved. These unknown expectations, or moments, can only be evaluated approximately, using suitable closure approxi-
mations. In the present paper two closure techniques are used. The first one is the ordinary cumulant-neglect closure. The
second one is a special closure technique developed for the present problem. The latter closure technique is obtained from
the tentative joint probability density of the state vector, assumed in form of the sum of a discrete and a continuous part.
The discrete part accounts for the fact that is the system is at rest at the initial time instant, it is still at rest before the first
impulse occurs. The continuous part is constructed from two kinds of conditional probability densities, conditioned on
the state$) and1 of the variableZ(t). Then the ordinary cumulant-neglect closure approximations are applied to condi-
tional moments only, yielding the modified closure approximations for the unconditional moments of the present problem.

The mean value and variance of the response are obtained by numerical integration of a suitably truncated set of moment
equations and verified against direct Monte Carlo simulations.

CONCLUSIONS

For a non-linear, non-hysteretic oscillator under a renewal impulse process stochastic excitation a technique is devised
to convert the original non-Markov problem into a Markov one. This is done at the expense of introducing auxiliary,
discrete-valued state variables. A special cumulant-neglect closure techniques is devised to truncate the hierarchy of
moments equations. This closure technique as well as the ordinary one are used in order to evaluate the mean value and
variance of the response. The approximate analytical results are verified against direct Monte Carlo simulations.
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