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NONLINEAR DYNAMICS OF AXIALLY MOVING VISCOELASTIC STRINGS BASED ON 
TRANSLATING EIGENFUNCTIONS 
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 Department of Mechanics, Shanghai University, Shanghai 200436, China 
   
Summary Nonlinear dynamics is investigated for transverse vibration of axially moving strings. The Kelvin viscoelastic model is chosen 
to describe the viscoelastic property of the string material. The tension is characterized as a small periodic perturbation on a constant 
mean value. The translating string eigenfunctions are employed to discretize the governing equation, a nonlinear partial differential 
equation. By use of the Poincaré maps, the dynamical behaviors are identified based on the numerical solutions of the ordinary 
differential equations that define respectively the 1, 2, 3 and 4-term truncated systems. The bifurcation diagrams are calculated in the 
case the dynamic viscosity is varied while other parameters are fixed. The bifurcation diagrams of 1, 2, 3 and 4-term truncated 
systems are qualitatively same. The numerical results indicate that chaos occurs for the small dynamic viscosity, and regular and 
chaotic motions alternately appear for the increasing dynamic viscosity. 
 

INTRODUCTION 
 
Many engineering devices involve the vibrations of axially moving strings. Traditionally, the investigations on axially 
moving strings were focused on equilibriums and periodic motions [1]. Recently, there are some researches on chaos and 
bifurcation of axially moving strings[2-4]. However, all these researches discretized the governing equation based on the 
stationary string eigenfunctions. The present work applies the translating eigenfunctions [5], which has the good 
convergence properties, to discretize the governing equation. 
 

DISCRETIZATION BASED ON THE TRANSLATING EIGENFUNCTIONS 
 
The dimensionless form of the governing equation for transverse vibration of an axially moving viscoelastic string is[2] 
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where v(ξ,τ) is the transverse displacement at time τ and axial coordinate ξ, γ is the axially moving speed, α and ω are 
respectively the amplitude and frequency of the periodic tension perturbation, and Ee and Ev are respectively the 
stiffness constant and the dynamic viscosity in the Kelvin model of the viscoelastic string, all in the dimensionless 
form. 
Equation (1) can be cast into the state variable form 
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Under the homogeneous boundary condition, the solution of Equation (2) can be assume as the expansion 
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where and qn
R are qn

I components of the generalized coordinates, and the translating eigenfunctions, which are 
orthogonal with respect to both operator matrix A and B, are [5]  
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Substituting Equation (4) into Equation (2), taking the inner product of both hands of the resulting equation, using the 
orthonormality of the eigenfunctions, and retaining only the first m terms in the resulting equation yield the m-term 
truncated system 
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where (a and b stand for R and I)  
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NEMERCAL RESULTS 

 
The Poincaré map is a convenient tool to identify the dynamical behavior, especially chaos. To view globally over a 
range of parameter values, the bifurcation diagrams are computed. The Poincaré maps of the dimensionless 
displacement of the center of the moving string, which is obtained by numerical integration of Equation (6) for 
m=1,2,3,4 respectively. The bifurcation diagrams of the dimensionless center displacement of the string against the 
dimensionless dynamic viscosity EV are shown in the following fingers.  
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CONCLUSIONS 
 

This paper treats nonlinear dynamical behaviors of transverse vibration of an axially moving strings constituted by the 
Kelvin viscoelastic. The string is subject to the pulsating tension. The governing equation is discretized based on the 
translating string eigenfunctions For the 1, 2, 3 and 4-term truncated systems. The bifurcation diagrams of the Poincaré 
maps are calculated for varying the dynamic viscosity. The bifurcation diagrams of 1, 2, 3 and 4-term truncated systems 
are qualitatively same. The numerical results indicate that chaos occurs for the small dynamic viscosity, and regular and 
chaotic motions alternately appear for the increasing dynamic viscosity. 
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