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ON THE NONLINEAR DYNAMICS OF MULTICOMPONENT DYNAMICAL SYSTEMS
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SummaryWe propose a framework for analysis of dynamical systems with a large number of heterogeneous coupled components. This
framework is used to propose a graph-theoretic decomposition that exhibits a chain of vertically unidirectionaly coupled levels and
horizontally decoupled components within each vertical level. The decomposition is used to prove a number of results on asymptotic
dynamics of coupled dynamical systems.

INTRODUCTION

A number of applications of current interest, such as large-scale engineered systems and genetic regulatory networks
involve a large number of heterogeneous, connected components, whose dynamics is affected by possibly an equally
large number of parameters. The classical dynamical systems approach attempts to analyze such systems via studying their
trajectories in their high-dimensional phase space. However, dynamical systems techniques are mostly developed for low-
dimensional systems. We introduce here a framework for studying such multicomponent systems and a graph-theoretic
decomposition that for a particular class of networks allows for efficient application of methods of low-dimensional
dynamical systems. We also present examples of such decomposition for some high-dimensional systems.

HORIZONTAL-VERTICAL DECOMPOSITION

The following result on decomposition of systems of ordinary differential equations can be proven using a graph-theoretic
approach:

Theorem 1 (Horizontal-vertical decomposition) Any system of ordinary differential equations can be decomposed intok
vertical levels, such that each higher level is driven by the dynamics of levels below. Every horizontal leveli ⊂ {1, ..., k}
can be decomposed intomi sets, which have dynamics independent of each other.

C
1

k C
2

k
C

m

k

C
1

k  -1 C
2

k  -1
C

m

k  -1

C
1

1 C
2

1
C

m

1

k

k-1

Figure 1. Decomposition described in the theorem

The states at the lowest level in some sense "control" the behavior of all the others. This representation of the system
allows for analysis using low-dimensional dynamical systems methods, as we describe next.

APPLICATIONS

The decomposition above is quite useful for analyzing asymptotic dynamics of a variety of coupled systems. The simplest
result in this direction is:



Proposition 2 Assume everyCj
i contains only one state and the dynamics of each is bounded. Then the system asymptotes

to a fixed point that is not at infinity.

Proof. If each of the systems at the first level is a one-dimensional system asymptotically converging to a fixed point, its
"input" into the second and higher levels is asymptotically constant in time. But, since each of the subsystemsCj

i has
bounded, one-dimensional dynamics, this means that eachCj

i will converge to a fixed point.

A fuel cell model
Here we show an application of the above decomposition to the 10-state fuel-cell dynamics model discussed in [1]. The
system has 10 components, states of which are defined onR, that we label by the index setN = {1, ...10}. We obtain
decomposition shown in figure 2. Every variable affects itself, but self-loops are not shown in the figure for clarity. Level
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Figure 2. Decomposition for the fuel cell problem.

4 of the decomposition contains only state 1. The dynamics of this state thus tends to a fixed point and asymptotically
can be taken just as a parameter input into level 3, where it enters through dynamics of state 2. Note that Level 3 of the
decomposition contains six states that have various feedback loops. Level 3 in turn affects states 6, 8, 9, but each of these
is a one dimensional state at either level 2 or level one so it is easy to prove that

Proposition 3 If the subsystem{2, 3, 4, 5, 7, 9} tends to a fixed point, then the system tends to a fixed point. If the
subsystem{2, 3, 4, 5, 7, 9} tends to a limit cycle, then the system tends to a limit cycle.

Proof. All of the systems at levels higher than 2 are 1-dimensional. If input to these is asymptotically constant, these
subsystems will tend to a fixed point. If the input is time-periodic with a fixed periodT , these will oscillate in time with
the same period as the input.

CONCLUSIONS

Graph-theoretic methods lead to a decomposition fo a system of ordinary differential equations into vertical levels. At
each vertical level there are subcomponents that do not interact with each other. Each vertical level only affects levels
above it, and is affected by states at the same level and below. The method of decomposition is useful for showing that
large classes of possibly very high dimensional networked systems can possess low dimensional (periodic, quasi-periodic,
low-dimensional chaotic) dynamics. We presented an application to a 10-state model of fuel cell dynamics.
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