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Summary This work deals with the overturning of a rocking rigid block on an oscillating base, an old fascinating topic which is
reconsidered by modern techniques of dynamica systems theory. The paper is divided in two parts: The first is theoretica and concerns
the amplitude threshold for contact between stable manifolds and rest position, while the second is numerical and leads to the definition of
the“true”’ safe basin of attraction. These points are somehow correlated, and they go thoroughly into previous authors' indghts[2, 3].

INTRODUCTION

The overturning behaviour of rocking rigid blocks has been attracting interest of researchers for a long time, starting
with its interest for the estimation of ancient earthquake magnitudes from observations of monuments ruins [4]. Many
other practical problems have also been seen to involve this paradigmatic model (see [2, 3] for a brief account), which
has a very complex dynamical behaviour in spite of its apparent simplicity. The well-known Housner model [1]:

¢ +d¢ —¢p+a+ycos(at+y)=0, $>0, ¢ +3¢ —¢—a+ycos(at+y)=0, ¢<0, ¢ ()=re (), ¢=0, (1)
is used (d=damping=0.02, a=block diagonal angle=0.2, y, w, y=amplitude, frequency and phase of the horizontal
excitation). It is based on the assumption that the block can only rock without diding and uplifting, and undergoes
instantaneous impacts (r=restitution coefficient=0.95). It is a quite accurate model for investigating the overturning,
which is the practically more interesting outcome. This question has been recently reconsidered by the authors, who
studied in detail the heteroclinic bifurcation of the hilltop saddles [2], as well as the question of its optimal control.

Heteroclinic bifurcation is a lower bound for the actual overturning
threshold, because below the penetration of the tongues of the overturned 3]
attractor into the safe in-well basin is prevented. Thisis shownin Fig. 1 ]
[3]. Extensive numerical simulations have shown that (Fig. 1): (1) for ]
small y the block does not overturn (grey) at al; (2) for largey it directly 1
topples (white) without oscillations. The third intermediate region, where
overturning may or may not occur, possibly with a bounded transient,
exhibits fractal features.

The boundary between high and intermediate regions is the immediate
overturning threshold Y™, and corresponds to the minimum y above
which there is overturning without oscillations in the potential well. The L=
boundary between low and intermediate regions is the first overturning 0 ® .10
threshold y'', and corresponds to the minimum y above which the rest L F‘lg‘ur‘e‘l.
position topples irrespective of the transient length in the potential well.  0.32]

Y™ has been determined also analytically, while y""™ has been 1 A

analytically approximated from below by Y™ (heteroclinic bifurcation 1 wi® wit
threshold) and y** (static overturning criterion), as shown in Fig. 1. y™ B,

is also an upper bound for V' (Fig. 1). . | )

The paper [3] has emphasized two important aspects: i) the role of the 1 © St
excitation phase, which is strictly related to the fact that one deals with a ]
single initial condition (the rest position (¢, ¢ )=(0,0)) instead of the
whole dynamics, and (ii) the role of the invariant manifolds in the .
immediate overturning. In particular, it has been shown that y™ 0% o
corresponds to the first direct touching of the stable manifolds W* with -0.28 , 0 0.28
the rest position (i.e., when A touches O for an arbitrary phase, Fig. 2). Figure 2. y=0.7,0=5,,y=0.

THEORETICAL ANALYSIS

Actually, practical interest is rather in determining analytical conditions for first overturning, to be possibly pursued
through an invariant manifold interpretation of the dynamics occurring for values of y<y™ and finally ending (for a
certain phase) with block toppling. It is accomplished in this work by looking for the analytical condition corresponding
to touching of point B with the rest position O (Fig. 2). Thiswill allow us to identify alower upper bound of V"'

The generic point (¢, ¢ ) of the second, left, branch of the perturbed stable manifold Wrs’2 of the right saddle (Fig. 2)
can be written in the form

p=E.a+y[Ecos(y)+Essin(y)], ¢ =Ejo+y[Escos(y))+Eesin(y)], 2
where the coefficients E; depends on 9, r, w and on the time B necessary to this initial condition to impact before
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asymptotically approaching the right saddle. When the excitation phase ( varies, the point (2) describes an ellipse in the
plane (¢, ¢ ) (pseudo phase space), and the point having the maximum value of ¢() is given by

Pra=E10+yY( E22+ E32) )
The critical condition corresponding to the touching of B with O is
mathematically given by ¢,,=0 and ¢ .»=0. When a, 9, r, ware fixed,
this is a system of two eguations in the two unknowns yand 3. The
solutions y° give the amplitude threshold for this critical event. For
example, for &=0.02, r=0.95, 0=0.2, w=5 the lowest solution is
y°=0.8492 and (=0.6476, and the corresponding manifold-phase-
portrait is reported in Fig. 3. Note that y° is below y™=1.0297 (Fig. 4).
The solutions y°=y°(«) of the previous system are depicted in Fig. 4.
They are constituted by several branches, which are reported with
different colors. As expected, the red line represents a better analytical
irst

upper bound of Y.

NUMERICAL INVESTIGATION

In the problem of overturning the initial condition is fixed and the
excitation phase is unknown. Thus, safe basins of the attraction in the
classical sense (the union of the basins of al in-well attractors), related to
a fixed ¢ (Fig. 6), do not provide adequate informations. It can, and
actually does, occur that for a given phase the block does not overturn,
while it topples for adifferent .

Then, one must look for phase-independent arguments, and the idea is
that of defining the “true” safe basin of attraction as the intersection of
all classica safe basins when (¢ ranges over the period: this is the
smallest phase-indendent set of initial conditions which do not entail
overturning, and it is therefore reliable from a practical point of view.

To practically determine the “true” safe basin we project the 2D stable
manifolds (in the 3D phase space (¢, ¢ ,t)) onto the plane (¢, ¢ ): the out
of projection area surrounding the rest position (0,0) is the “true” safe
basin (Fig. 5).

The comparison between Figs. 5 and 6 permits to appreciate the
differences between the “true” and the classical safe basins. In particular
it is seen how by classical arguments the safety from overturning, here
interpreted as the farness from the closest initial condition leading to
toppling, is strongly overestimated.

The erosion of the “true” safe basin when the excitation grows is the
triggering phenomenon for toppling.

CONCLUSIONS

To the authors knowledge, this work is one of the first attempts to make
explicit the role played by the invariant manifolds on the overturning of
rigid blocks, thus providing a theoretica interpretative framework of this
important practical phenomenon.

The obtained y° threshold corresponds to touching of the stable
manifold with the rest position. The investigation of the possible
occurrence of homo/heteroclinic connections between the hilltop and
secondary saddles, likely responsible for erosion of the safe basin below
y'"* and for touching with y""S<y<y?, is left for future work.
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@ mex=E40+Y[EsEo+EsEa] IV(E,*+E5Y),

Y=atan(E4/Ey). (3)
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