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Summary Time delayed feedback control is well-known as a practical method for stabilizing unstable periodic orbits embedded in
chaotic attractors. However, its control performance has not been clarified with relation to global dynamics of controlled systems. In
this paper, we numerically discuss the influence of a remaining chaotic invariant set under control for chaos of Two-well Duffing system.
We reveal that it causes highly complicated domain of attraction for target orbits and long chaotic transient before the convergence.

Since the pioneer work by Ott, Grebogi and Yorke [1], methods for stabilizing unstable periodic orbits embedded in chaotic
attractors have been extensively studied in the field of nonlinear dynamics [2]. Among several advanced methods, the time
delayed feedback control method has an ability to stabilize target unstable periodic orbits by using the difference between
present output signals and past ones of controlled objects [3]. The control method is easily implemented without the exact
model of the controlled object nor complicated computer processing for reconstruction of the underlying dynamics. For
these practical advantages, the control method has been successfully applied to experimental chaotic systems in various
fields of research including electronic circuits [4], laser systems [5], mechanical oscillators [6] and chemical systems [7]
and so on. In addition, its theory has developed based on local stability analysis around the target unstable periodic orbits.
One of the important results is the derivation of odd number condition. The odd number condition gives a class of unstable
periodic orbits which can not be stabilized by the control method [8, 9, 10]. Against this negative condition, Pyragas has
recently improved the control method [11].
On the other hand, there still remain open problems for clarification of control performance [13]. In particular, the
following two problems are here focused on with relation to the convergence of states to target orbits. One is the domain
of attraction for target orbits under control [13]. Its tract and structure are closely related to practical problems such
as deciding onset timing of control and estimating effects of noise. It also gives information necessary for targeting
scheme when multiple orbits coexist in the controlled system. Another is transient behavior after onset time of control.
It is expected that the controlled system quickly converges toward the target orbit without irregular behavior before
convergence. While these problems are quite important for engineering use of the control method, there was no detailed
discussion about them. The problems are directly connected to global dynamics of the controlled system with time delay.
Therefore it is essential to consider the structure of the phase space in function space, which has infinite dimension.
In this paper, we numerically discuss the global structure of the time delayed feedback controlled Two-well Duffing
system. The discussion is based on the existence of the one dimensional global unstable manifold originating from a
directly unstable fixed point, which corresponds to an unstable periodic orbit which can not be stabilized due to the odd
number condition. The homoclinic intersection of its unstable manifold and stable manifold generates a chaotic invariant
set in the uncontrolled system [14, 15]. In the following, the presence of the chaotic invariant set in the controlled system
and its influence on the domain of attraction and transient behavior are discussed.
The Two-well Duffing system is a model of the first-mode vibration in magnet-elastic beam system with sinusoidal forcing
[14]. This paper deals with a Two-well Duffing system controlled with use of velocity component for delayed feedback.
The system is described by the following delay differential equation : ẍ(t) + δẋ(t) + x(t)3 − x(t) = A cos ωt + u(t),
where x(t) and ẋ(t) denote the displacement and velocity of the Two-well Duffing system, respectively. The u(t) indicates
control signal simply given as u(t) = K[ẋ(t− τ)− ẋ(t)] ; t ≥ t0, where K is feedback gain and t0 onset time of control.
The τ is time delay, which is adjusted to the period of target unstable periodic orbits embedded in chaotic attractors.
The u(t) obviously keeps null before onset time of control. Once control turns on, the control signal converges to null
according to the stabilization of the system to one of the target orbits. As a result of the convergence, the controlled
system degenerates from the infinite dimensional system with time delay to the original two dimensional system. Since
the domain of attraction and transient behavior are characterized by the infinite dimensional system under remarkable
control input, their treatment is obviously beyond the scope of local stability analysis of target orbits. In the following, the
parameter is fixed at (δ, A, ω) = (0.16, 0.27, 1.0), where the uncontrolled system generates the chaotic attractor [15]. δ

here denotes damping coefficient. A represents forcing amplitude and ω the frequency. The dynamics under ω = 1.0 was
summarized in [15]. τ is adjusted to 2π for stabilizing two symmetric inversely unstable periodic orbits with period-2π.
Note that the number and location of orbits with period-2π keeps under control [16]. The controlled system has three
unstable periodic orbits with period-2π [15], as shown in Fig. 1. Two of them are the target orbits (denoted by 1I and 1I′)
mentioned above. They are easily stabilized by the control. The other is a directly unstable periodic orbit (denoted by 1D)
which can not be stabilized due to the odd number condition. The 1D has one dimensional global unstable manifold in
the controlled system, because it possesses only one real characteristic multiplier greater than unity. In the following, the
global structure of the controlled system is discussed with relation to this unstable manifold.
Figure 2 shows the unstable manifold of 1D in the controlled system. When K = 0, the unstable manifold is obviously
identical to that in the uncontrolled system, as shown in Fig. 2(a). The closure of the unstable manifold coincides with
the only one chaotic attractor shown by stroboscopic points. Since the unstable manifold of 1D transversely intersects
the stable manifold of 1D [14, 15], the controlled system has a chaotic invariant set. Then the regions of phase space
are stretched and folded along the unstable manifold with evolution of time. Figure 2(b) shows the unstable manifold



at K = 0.75. At this feedback gain, the two target orbits are stable. They are denoted by 1S and 1S′ in Fig. 2(b). The
unstable manifold appears to intersect itself, because the unstable manifold on stroboscopic map is the projection from
the function space. The two branches of the unstable manifold start from 1D in the opposite direction from each other.
However they are folded and then come close to 1D again parallel to the branches itself. The branches further grows in
the opposite direction from each other. The regions of phase space is stretched near 1D and then folded around left and
right hand sides in Fig. 2(b) with evolution of time. It implies that the phase space at K = 0.75 inherits the characteristic
of the chaotic dynamics obtained at K = 0, although there is a difference that the phase space is here defined in function
space under control signal. With the same approach, we also confirmed that further increase of feedback gain brings
some global bifurcations which completely break the homoclinic intersection obtained in the uncontrolled system. After
this bifurcation, the unstable manifold becomes quite simple compared with that in Fig. 2(b). Therefore, the unstable
manifold in Fig. 2(b) shows the remain of chaotic invariant set in the controlled system, while it is not an attractor because
of the presence of stabilized target orbits. The trajectory after onset time of control wanders between 1S and 1S′ along
the unstable manifold, as shown by the stroboscopic points in Fig. 2(b). Its change in time is shown in a window of
Fig. 2(b). It shows that the controlled trajectory irregularly goes back and force between 1S and 1S′ many times, before
final convergence to 1S. Then, the steady state obtained by the control is not predictable because of this long and irregular
transient behavior. Figure 3 shows the classification of stroboscopic points with steady states. Each point here corresponds
to different onset timings of control which is taken every period-2π. Before each onset time, the system generates the
chaotic attractor, which coincides with the closure of the unstable manifold at K = 0 (See Fig. 2(a)). The points are
classified with green and red color, which imply convergence to 1S and 1S′, respectively. The green and red points are
finely mixed one another all over the chaotic attractor. It implies that the steady states almost randomly alternate between
1S and 1S′ with onset timing of control and influence of external disturbance. In addition, since the two types of points
are mixed even in the neighborhood of the target orbits, the controlled system possibly converges to the target orbit in
the opposite side from the other target, near which control started. Therefore, it is inevitable that the targeting scheme
based on linearisation has no possibility of effective convergence. These characteristics are obviously disadvantage for
engineering use of the control method. However, no detail discussion for the characteristics has been obtained.
In summary, the original chaotic invariant set possibly remains in the controlled Two-well Duffing system, even when
the feedback gain is enough large to stabilize the target orbits. The remain of the chaotic invariant set causes highly
complicated domain of attraction of two symmetric target orbits and long chaotic transient before convergence to them. It
shows that the further extension of the control method including targeting scheme and design of feedback gain should be
established in the light of the global structure in function space.
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Figure 2. Unstable manifold of 1
D projected on stroboscopic map
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Figure 3. Classification of strobo-
scopic points with stabilized states.


