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Summary Chaotic dynamics of the dripping faucet was investigated both experimentally and theoretically. In our experiment using a high-
speed camera, we measured continuous change in the position and velocity of the center of mass of the pendant drop prior to its
detachment. Continuous trajectories of a low-dimensional chaotic attractor were reconstructed from these data, which was not previously
obtained but predicted in our fluid dynamic simulation. From the numerical analysis, we further obtained an approximate potential function
with only two variables, the mass of the pendant drop and the position of the center of mass, which corresponds to a set of solutions of
Young-Laplace equation. On the basis of the potential landscape we discuss the mechanism of the chaotic dripping faucet.

The rhythm of a dripping water faucet
is not always regular and sometimes exhibits
irregular behavior, which sensitively depends
on the flow rate. It is nowadays well-known
that the irregularity of this system arises from
deterministic chaos. Most previous studies of
the chaotic dripping faucet have involved
measuring the time interval 7, between
successive drips, because the dripping time is easily measured using a drop-counter apparatus [1]. The time intervals
are then plotted in pairs (7,, 7T,.) for each n to give a return map. Because the return maps typically appear low
dimensional, the behavior is often described by a simple dynamical model composed of a variable mass and a spring. In
this mass-spring model, a mass point, whose mass increases
linearly with time at a given flow rate Q, oscillates with a fixed 16
value of the spring constant k; and a part Am of the total mass m is
removed when the spring extension exceeds a threshold, which
describes the detachment of a falling drop. Although the model
exhibits chaotic return maps similar to those obtained
experimentally, its empirical nature means that it does not provide
a unified explanation for the complex behavior of the real dripping
faucets. Thus, the direct link between the low-dimensional
dynamical system and a presumably infinite-dimensional fluid
dynamical system remains elusive.

The aim of this paper is to understand how the dripping
faucet dynamics can exhibit low-dimensional chaos. To this end, we
tracked the drop formation in continuous time using fluid dynamic
simulations based on a new algorithm involving Lagrangian
description [2]. Using the simulation, we can reproduce not only
the time-dependent shapes of the pendant drops (Fig. 1), but also
various characteristics of chaotic dynamical systems [3]. Together
with the numerical simulation, we conducted experiments using a
high-speed camera. In our experiments, the mass m and the
position zg of the center of mass of the pendant drop under the
nozzle was estimated from the shape of the pendant drop using the
digitized image recorded by the high-speed video camera every
1/500's. “%o 02 04 06 08 10

Measurement of the continuous-time variables {zg(t), ' ’ ZG [crﬁ] ’ ’
m(t)} made it possible to visualize the reconstructed chaotic
attractor in a continuous state space for the first time. The

Fig. 1. Simulation results for a dripping water faucet (7 mm diameter).
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Fig. 2. The top panel is the experimentally

projection of the attractor in the plane (zg, Zg) corresponding to a
chaotic motion is shown in Fig. 2, including the return map of T,
(Fig. 2 (d)(e)). The top panel of Fig. 2 is the experimentally
observed strange attractor, and the bottom panel is numerical
simulations. The qualitative agreement between the experiment and
the simulation is excellent. On average, zg(f) oscillated six times
during each time interval T,, which corresponds to the spiral
structure of the attractor in Fig. 2. The transition from the
oscillating process to the 'necking' process occurs in the region S in
which trajectories starting with slightly different remnant masses

observed strange attractor, where the position zg
and the velocity Zg of the pendant drop under the
nozzle are plotted at every 1/500 s. (a)-(c)
Poincaré cross sections of the attractor (plotting of
Zg VS. zg at time ¢ measured from each breakup
moment. (d) Return map of dripping time intervals
T,. The bottom panel is numerical simulations,
where a dripping water faucet (7 mm diameter) is
simulated at the flow rate Q = 0.32 g/s. (e) Return
map of dripping time intervals T,.
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separate exponentially from each other (Fig. 2 (top)). The

(@)_ = " m=0140¢ (b)

cross sections (Fig. 2 (a)-(c)) show the existence of the s
stretching and folding mechanism, which plays an 8 |°
essential role in chaotic dynamics. The cross sections of §

the attractor in Fig. 2 (a)-(c) look nearly one-dimensional T %0
and explicitly show that the motion of the pendant drop is ®

well characterized by a few state variables. In a wide ﬁ

range of relatively small flow rate (for the nozzle diameter §

~ 5 mm, Q < 0.4 g/s), approximately one-dimensional
structure of cross sections was observed in both our
experiments and numerical simulations.

The motion of the pendant drop is subjected to
gravitational force and surface tension. Since the surface 229

U/m [erg/g]

energy depends on the shape of the pendant drop, the total W[~ O0166e
potential energy U (i.e., gravitational plus surface) should g \

be a function of the many degrees of freedom of the E
liquid. Our simulations show, however, that = el \'065
approximating U as a function of two variables, m and zg, 2 [em]

yields a conceptually clear picture for the basic low-
dimensional structure of the system. Cross sections of flow rate O = 0.32 g/s). Cross section of U/m for the attractor

U/m, the potential energy per unit mass, at several fixed is plotted vs. zg on a constant mass surface, where U/m is the
values of m for the chaotic attractor shown in Fig. 2 (4 potential (= surface tension plus gravitation) energy per
(bottom) are presented in Fig. 3 (a). Although the cross  ynit mass as a function of m (pendant drop mass in units of
sections in Fig. 3 (a) look two-folded, if they are  gram in each panel) and zg (position of the center of mass).
approximated as single-valued functions, then a sheet of  (c) Schematic view of a typical potential surface. The
the potential surface U(m, zg})/m is obtained as shown in  pendant drop shapes in various state points (zg, m) on the
Fig. 3 (b). It can be shown that without solving the fluid  potential surface are indicated. The breakup occurs on the
dynamical equations the potential function U is obtained  dashed line.

from Young-Laplace equation which describes the static equilibrium shape of drops. In 1973, Padday and Pitt proposed
a hypothesis that perturbations from one solution of Young-Laplace equation to another are perturbations of the lowest
energy [4]. On the basis of this hypothesis, they obtained energy profiles of pendant drops like Fig. 3 (c) from the
Young-Laplace equation and discussed stability of the static equilibrium shape. We will demonstrate that the above
mentioned potential function U is equivalent to that computed using the Young-Laplace equation. The potential surface
is characterized by a U-shaped valley and a ridge which converge as m increases and have totally merged when m =
M, the maximum mass of the static stable shape.

Our result leads to the motion of the dripping faucet being described in terms of the approximate potential
function U. If the flow rate Q is small enough so that the initial oscillation after the breakup is damped, the state point
of the pendant drop goes along the bottom of the valley as m increases. At m = m;;, where the valley merges into the
ridge, the pendant drop loses its stability (start of the necking process) and rapidly approaches the breakup point (on the
broken line in Fig. 3 (b)). Since the instability always begins at the same point m = m.; in this case, the size of each
falling drop is uniform (i.e., Tate’s law). If, on the other hand, the oscillation of the pendant drop affects the start of
necking, the dripping motion exhibits a variety of flow rate-dependent periodic and chaotic patterns. Note that the state
point of a pendant drop generally gets over the ridge before m reaches m.; when it is oscillating. At a flow rate
resulting in a chaotic motion, two trajectories starting with slightly different m values (different remnant masses) are
initially close to each other. As m increases, however, one trajectory may get over the ridge at a certain m value, while
the other remains in the valley owing to a small difference in zg (two lines with arrow in Fig. 3 (b)). The potential
landscape illustrates how the trajectories experience stretching and folding as shown in Fig. 2 (a)-(c).

In conclusion, we showed experimentally and numerically the low-dimensionality of the reconstructed chaotic
attractor in a continuous state space. Moreover, we demonstrated that the dripping faucet dynamics can be basically
described using a potential function with only two variables, the mass of the pendant drop and the position of the center
of mass. The potential landscape is the key to understanding how the dripping faucet dynamics can exhibit low-
dimensional chaos.

Fig. 3. (a) Fluid dynamic simulation (7 mm diameter, the
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