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Summary Chaotic dynamics of the dripping faucet was investigated both experimentally and theoretically. In our experiment using a high-
speed camera, we measured continuous change in the position and velocity of the center of mass of the pendant drop prior to its 
detachment. Continuous trajectories of a low-dimensional chaotic attractor were reconstructed from these data, which was not previously 
obtained but predicted in our fluid dynamic simulation. From the numerical analysis, we further obtained an approximate potential function 
with only two variables, the mass of the pendant drop and the position of the center of mass, which corresponds to a set of solutions of 
Young-Laplace equation. On the basis of the potential landscape we discuss the mechanism of the chaotic dripping faucet.  
 

The rhythm of a dripping water faucet 
is not always regular and sometimes exhibits 
irregular behavior, which sensitively depends 
on the flow rate. It is nowadays well-known 
that the irregularity of this system arises from 
deterministic chaos. Most previous studies of 
the chaotic dripping faucet have involved 
measuring the time interval Tn between 
successive drips, because the dripping time is easily measured using a drop-counter apparatus [1]. The time intervals 
are then plotted in pairs (Tn, Tn+1) for each n to give a return map. Because the return maps typically appear low 
dimensional, the behavior is often described by a simple dynamical model composed of a variable mass and a spring. In 
this mass-spring model, a mass point, whose mass increases 
linearly with time at a given flow rate Q, oscillates with a fixed 
value of the spring constant k; and a part ∆m of the total mass m is 
removed when the spring extension exceeds a threshold, which 
describes the detachment of a falling drop. Although the model 
exhibits chaotic return maps similar to those obtained 
experimentally, its empirical nature means that it does not provide 
a unified explanation for the complex behavior of the real dripping 
faucets. Thus, the direct link between the low-dimensional 
dynamical system and a presumably infinite-dimensional fluid 
dynamical system remains elusive.  

The aim of this paper is to understand how the dripping 
faucet dynamics can exhibit low-dimensional chaos. To this end, we 
tracked the drop formation in continuous time using fluid dynamic 
simulations based on a new algorithm involving Lagrangian 
description [2]. Using the simulation, we can reproduce not only 
the time-dependent shapes of the pendant drops (Fig. 1), but also 
various characteristics of chaotic dynamical systems [3]. Together 
with the numerical simulation, we conducted experiments using a 
high-speed camera. In our experiments, the mass m and the 
position zG of the center of mass of the pendant drop under the 
nozzle was estimated from the shape of the pendant drop using the 
digitized image recorded by the high-speed video camera every 
1/500 s.  

Measurement of the continuous-time variables {zG(t), 
m(t)} made it possible to visualize the reconstructed chaotic 
attractor in a continuous state space for the first time. The 
projection of the attractor in the plane (zG , żG) corresponding to a 
chaotic motion is shown in Fig. 2, including the return map of Tn 
(Fig. 2 (d)(e)). The top panel of Fig. 2 is the experimentally 
observed strange attractor, and the bottom panel is numerical 
simulations. The qualitative agreement between the experiment and 
the simulation is excellent. On average, zG(t) oscillated six times 
during each time interval Tn, which corresponds to the spiral 
structure of the attractor in Fig. 2. The transition from the 
oscillating process to the 'necking' process occurs in the region S in 
which trajectories starting with slightly different remnant masses 

 

Fig. 1. Simulation results for a dripping water faucet (7 mm diameter). 

 

 

Fig. 2. The top panel is the experimentally 
observed strange attractor, where the position zG 
and the velocity żG of the pendant drop under the 
nozzle are plotted at every 1/500 s. (a)-(c)
Poincaré cross sections of the attractor (plotting of 
żG vs. zG at time t measured from each breakup 
moment. (d) Return map of dripping time intervals 
Tn. The bottom panel is numerical simulations, 
where a dripping water faucet (7 mm diameter) is 
simulated at the flow rate Q = 0.32 g/s. (e) Return 
map of dripping time intervals Tn.  
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separate exponentially from each other (Fig. 2 (top)). The 
cross sections (Fig. 2 (a)-(c)) show the existence of the 
stretching and folding mechanism, which plays an 
essential role in chaotic dynamics. The cross sections of 
the attractor in Fig. 2 (a)-(c) look nearly one-dimensional 
and explicitly show that the motion of the pendant drop is 
well characterized by a few state variables. In a wide 
range of relatively small flow rate (for the nozzle diameter 
~ 5 mm, Q < 0.4 g/s), approximately one-dimensional 
structure of cross sections was observed in both our 
experiments and numerical simulations. 

The motion of the pendant drop is subjected to 
gravitational force and surface tension. Since the surface 
energy depends on the shape of the pendant drop, the total 
potential energy U (i.e., gravitational plus surface) should 
be a function of the many degrees of freedom of the 
liquid. Our simulations show, however, that 
approximating U as a function of two variables, m and zG, 
yields a conceptually clear picture for the basic low-
dimensional structure of the system. Cross sections of 
U/m, the potential energy per unit mass, at several fixed 
values of m for the chaotic attractor shown in Fig. 2 
(bottom) are presented in Fig. 3 (a). Although the cross 
sections in Fig. 3 (a) look two-folded, if they are 
approximated as single-valued functions, then a sheet of 
the potential surface U(m, zG})/m is obtained as shown in 
Fig. 3 (b). It can be shown that without solving the fluid 
dynamical equations the potential function U is obtained 
from Young-Laplace equation which describes the static equilibrium shape of drops. In 1973, Padday and Pitt proposed 
a hypothesis that perturbations from one solution of Young-Laplace equation to another are perturbations of the lowest 
energy [4]. On the basis of this hypothesis, they obtained energy profiles of pendant drops like Fig. 3 (c) from the 
Young-Laplace equation and discussed stability of the static equilibrium shape. We will demonstrate that the above 
mentioned potential function U is equivalent to that computed using the Young-Laplace equation. The potential surface 
is characterized by a U-shaped valley and a ridge which converge as m increases and have totally merged when m = 
mcrit, the maximum mass of the static stable shape.  

Our result leads to the motion of the dripping faucet being described in terms of the approximate potential 
function U. If the flow rate Q is small enough so that the initial oscillation after the breakup is damped, the state point 
of the pendant drop goes along the bottom of the valley as m increases. At m = mcrit, where the valley merges into the 
ridge, the pendant drop loses its stability (start of the necking process) and rapidly approaches the breakup point (on the 
broken line in Fig. 3 (b)). Since the instability always begins at the same point m = mcrit in this case, the size of each 
falling drop is uniform (i.e., Tate’s law). If, on the other hand, the oscillation of the pendant drop affects the start of 
necking, the dripping motion exhibits a variety of flow rate-dependent periodic and chaotic patterns. Note that the state 
point of a pendant drop generally gets over the ridge before m reaches mcrit when it is oscillating. At a flow rate 
resulting in a chaotic motion, two trajectories starting with slightly different m values (different remnant masses) are 
initially close to each other. As m increases, however, one trajectory may get over the ridge at a certain m value, while 
the other remains in the valley owing to a small difference in zG (two lines with arrow in Fig. 3 (b)). The potential 
landscape illustrates how the trajectories experience stretching and folding as shown in Fig. 2 (a)-(c).  

In conclusion, we showed experimentally and numerically the low-dimensionality of the reconstructed chaotic 
attractor in a continuous state space. Moreover, we demonstrated that the dripping faucet dynamics can be basically 
described using a potential function with only two variables, the mass of the pendant drop and the position of the center 
of mass. The potential landscape is the key to understanding how the dripping faucet dynamics can exhibit low-
dimensional chaos.  
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Fig. 3. (a) Fluid dynamic simulation (7 mm diameter, the 
flow rate Q = 0.32 g/s). Cross section of U/m for the attractor 
is plotted vs. zG on a constant mass surface, where U/m is the 
total potential (= surface tension plus gravitation) energy per 
unit mass as a function of m (pendant drop mass in units of 
gram in each panel) and zG (position of the center of mass). 
(c) Schematic view of a typical potential surface. The 
pendant drop shapes in various state points (zG, m) on the 
potential surface are indicated. The breakup occurs on the 
dashed line.


