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Summary The paper isamed at demonstrating the mechanism triggering chactic phenomenain nonlinear dynamical systems, i.e. the
formation of nonattracting invariant chaotic sets (chacotic saddles), which originates from the globa bifurcations. Characteristic
examples of the resulting chaotic system behaviors, such as chactic transient motions, fractal basin boundaries and an
unpredictability of the final outcome, are shown and discussed. Numerical study is carried out for two low dimensiona but
representative models of nonlinear dissipative oscillators driven externally by periodic force.

INTRODUCTION

A central problem in nonlinear dynamics is that of discovering how the qualitative dynamical properties of regular
solutions change and evolve as the dynamical system is continuously changed. It is known that nonlinear systems
typically possess more than one solution a given values of control parameters, and that two or more solutions may be
locally stable. In periodically forced oscillators, typical nonlinear resonance responses reveal various types of sudden
changes (bifurcations) of coexisting stable periodic orbits, resulting in a qualitatively new state when forcing parameters
are varied. However, there are the existing unstable solutions, which, although physically unrealizable, play decisive
roles in the organization of the phase space of a dynamical system, and lead to sudden changes in system behavior that
are not caused by local bifurcations. These changes belong to the category of global bifurcations and are typically
triggered by tangencies, and further transversal intersections of the invariant manifolds associated with the unstable
orbits [4,5]. With the sweep of the forcing parameter, it results in cresting an uncountable nonattracting invariant set,
called a chaotic saddle[1,2]. Mathematically, chaotic saddleis a closed, bounded invariant set having a dense orhit (i.e.
including a Cantor set). It means that it possesses a chaotic trgjectory that never leaves the phase-space region
containing the set, while almost every trajectory leaves the region after some transient time, possibly reaching a remote
attractor. In other words, all initial conditions except for a set of Lebesque measure zero leave the region. This type of
dynamics is referred to as a horseshoe-type one, as it is similar to the “stretching and contracting” action of the
prototypical two-dimensional horseshoe map possessing a hyperbolic invariant set [6,7]. Existence of a chactic saddleis
the source of complexity of the system dynamics (even in smple one-dimensional systems), as it generates sensitivity
toinitial conditions, and thisimplies chaotic responses.

Theoretically, the chactic trajectory initialized exactly at the point belonging to a chaotic saddle will stay on this set for
ever, wandering to and fro, but this situation is neither physically nor numerically realizable, due to round-off and the
exponentia growth in errors. In practice, the orbit can spend a possibly long time in the vicinity of the chaoctic saddle
before it leaves, thus producing chactic transient maotion. In a large class of oscillators with at least one maximum of
potential energy, in certain regions of control space chactic transient may be characterized by multiple crossings of the
potential barrier [4,5]. This makes the question of necessary conditions for the chaotic transent to occur to be an
important point in the analysis of dynamical responses of engineering systems.

MODELSOF OSCILLATORSAND NUMERICAL TECHNIQUES

In the paper, characteristic examples of the chaotic system dynamics due to expanding chaotic saddles as a result of the
sequence of global (homoclinic and heteroclinic) bifurcations, with the increase of the forcing parameter, are presented
and discussed, making use of the two low-dimensional mathematical models of nonlinear, strictly dissipative oscillators
driven externally by periodic force.

Thefirs mode isthetwin-well potential system (Duffing’ s oscillator):

k+hk-Yox+¥x3 =Fsnwt, T =27w, 1)

with the potential energy having two minima (stable equilibrium positions) at x =1, and one maximum (unstable
equilibrium position, potential barrier) at x=0.
The second modd is the plane pendulum system

X+hx+sinx =F sinwt, T=2r1w, 2
with the potential energy having minimaat x =2n7 and maximaa x=(2n-1)77,(n=+0,12,3...). If thesystem is
viewed in cylindrical space, it can be treated as a single-well potentia system, with single stable (hanging) and single
ungable (inverted, potential barrier) equilibrium positions.
For the sake of convenience, both equations are sought in a nondimensiona form, with the time rescaled by linear
elgenfrequencies of the undamped systems. With the fixed damping coefficient h (h = 0.1), the control parameters are
the amplitude F and the frequency w of the driving force.
The oscillators belong to archetypal representative models for the analysis of inherently nonlinear phenomena and are
often used in engineering dynamics because they model a wide class of multidimensional systems whose dynamics can
be captured by a single active mode (e.g. buckled beams, offshore structures, buildings in earthquake etc.). In both
cases, we confine attention to the region of the principal resonance with respect to driving force (w=1), i.e. theregion



where the nonlinear resonance hysteresis occurs.

In the study we use ideas and numerical techniques of the nonlinear dynamics and chaos, which lead to clear
interpretation of the system regular and chactic properties in particular regions of the forcing parameters. The most
valuable in studying the related phenomena is the concept of the Poincaré return map which consists in discrete time
sampling of the periodic motion x(t) = x(t +T), x(t) = x(t+T) in the phase space (with the sampling time equal to the
known excitation period T =27/« ), thus allowing to study the 3D flow governed by the ordinary differential equation
by considering the associated 2D map. The idea of Poincaré map is successfully applied for the visualization of the
basins of attraction of the stable solutions (attractors), i.e. the domains of all initial conditions in the Poincaré section
plane whose sampled trajectories approach asymptotically the particular attractors. The geometrical representation of
the stable and unstable invariant manifolds in the Poincaré section, in connection with the related basin-phase structure
and the detected existence of a chactic saddle, allows us to establish the appropriate critical thresholds of global
bifurcations, which define the sequential build-up of chaotic system responses.

We detect and visualize the existing chaotic saddle by plotting numerically a chactic trgjectory that never |eaves the
saddle. Such numerically obtained trajectory is referred to as a saddle straddle trajectory, and the method capable of
finding it isknown asthe PIM (Proper Interior Maximum) triple method [2].

The figures have been created using the Dynamics software [3].
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Fig. 1. Expansion of a chaotic saddle due to the Melnikov homoclinic bifurcation in a pendulum system (2), in theregion of existence
of asingleattractor § (w=0.84); (a8 F=0.30; (b) F=0.37; (c) F=0.57.

CONCLUDING REMARKS

The phenomenon of formation of the nonattracting invariant chaotic sets (chaotic saddles) that occurs in nonlinear
dissipative oscillators as the forcing parameter changes, and its crucia role in generating chaoctic dynamics (senstivity
to initial conditions), is highlighted. It is shown that the phenomenon is strictly related to a sequence of the global
(homoclinic and heteroclinic) bifurcations, i.e. transversal intersections of stable and unstable invariant manifolds of the
particular existing unstable orbits. The lowest critical threshold of formation of a chaotic saddle is defined by the
homoclinic bifurcation of the unstable orbit that corresponds to the potential barrier, and can be derived anadytically
(Melnikov criterion [7]). It is demondrated that creation of a chaotic saddle manifests itself by the appearance of
chaotic transient motions of an unpredictable, possibly long time duration. as well as that transent chaos typically
appears at the level of control parameter values much lower than the one giving rise to a steady-state chaos (chaotic
attractor). If two or more attractors with their basins of attraction coexist, chaotic saddle (embedded in a basin
boundary) destroys its regular one-dimensional structure and generates fractal structure of the boundary, thus causing a
loss of predictability of the final attractor reached. However, numerical evidence has been presented that, due to an
existing chaotic saddle, chaotic transient motions are also generated in the case of a single attractor (Fig. 1).

The study allows establishing critical values of forcing parameters which are important in safe engineering, i.e. which
define the domains of the safe (regular and predictable), relatively safe (possible chaotic, but confined to the inside of
the potential well) and unsafe (chaotic with crossing the potential barrier and so dangerous for the structure) transient
system motion.
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