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Summary The paper is aimed at demonstrating the mechanism triggering chaotic phenomena in nonlinear dynamical systems, i.e. the 
formation of nonattracting invariant chaotic sets (chaotic saddles), which originates from the global bifurcations. Characteristic 
examples of the resulting chaotic system behaviors, such as chaotic transient motions, fractal basin boundaries and an 
unpredictability of the final outcome, are shown and discussed. Numerical study is carried out for two low dimensional but 
representative models of nonlinear dissipative oscillators driven externally by periodic force.  
 

INTRODUCTION  
 
A central problem in nonlinear dynamics is that of discovering how the qualitative dynamical properties of regular 
solutions change and evolve as the dynamical system is continuously changed. It is known that nonlinear systems 
typically possess more than one solution at given values of control parameters, and that two or more solutions may be 
locally stable. In periodically forced oscillators, typical nonlinear resonance responses reveal various types of sudden 
changes (bifurcations) of coexisting stable periodic orbits, resulting in a qualitatively new state when forcing parameters 
are varied. However, there are the existing unstable solutions, which, although physically unrealizable, play decisive 
roles in the organization of the phase space of a dynamical system, and lead to sudden changes in system behavior that 
are not caused by local bifurcations. These changes belong to the category of global bifurcations and are typically 
triggered by tangencies, and further transversal intersections of the invariant manifolds associated with the unstable 
orbits [4,5]. With the sweep of the forcing parameter, it results in creating an uncountable nonattracting invariant set, 
called a chaotic saddle [1,2]. Mathematically, chaotic saddle is a closed, bounded invariant set having a dense orbit (i.e. 
including a Cantor set). It means that it possesses a chaotic trajectory that never leaves the phase-space region 
containing the set, while almost every trajectory leaves the region after some transient time, possibly reaching a remote 
attractor. In other words, all initial conditions except for a set of Lebesque measure zero leave the region. This type of 
dynamics is referred to as a horseshoe-type one, as it is similar to the “stretching and contracting”  action of the 
prototypical two-dimensional horseshoe map possessing a hyperbolic invariant set [6,7]. Existence of a chaotic saddle is 
the source of complexity of the system dynamics (even in simple one-dimensional systems), as it generates sensitivity 
to initial conditions, and this implies chaotic responses.  
Theoretically, the chaotic trajectory initialized exactly at the point belonging to a chaotic saddle will stay on this set for 
ever, wandering to and fro, but this situation is neither physically nor numerically realizable, due to round-off and the 
exponential growth in errors. In practice, the orbit can spend a possibly long time in the vicinity of the chaotic saddle 
before it leaves, thus producing chaotic transient motion. In a large class of oscillators with at least one maximum of 
potential energy, in certain regions of control space chaotic transient may be characterized by multiple crossings of the 
potential barrier [4,5]. This makes the question of necessary conditions for the chaotic transient to occur to be an 
important point in the analysis of dynamical responses of engineering systems. 
 

MODELS OF OSCILLATORS AND NUMERICAL TECHNIQUES  
 
In the paper, characteristic examples of the chaotic system dynamics due to expanding chaotic saddles as a result of the 
sequence of global (homoclinic and heteroclinic) bifurcations, with the increase of the forcing parameter, are presented 
and discussed, making use of the two low-dimensional mathematical models of nonlinear, strictly dissipative oscillators 
driven externally by periodic force.  
The first model is the twin-well potential system (Duffing’s oscillator): 
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with the potential energy having two minima (stable equilibrium positions) at 1±=x , and one maximum (unstable 
equilibrium position, potential barrier) at 0=x .  
The second model is the plane pendulum system  
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with the potential energy having minima at πnx 2=  and maxima at π)12( −= nx , ( ....3,2,1,0±=n ).  If the system is 
viewed in cylindrical space, it can be treated as a single-well potential system, with single stable (hanging) and single 
unstable (inverted, potential barrier) equilibrium positions.  
For the sake of convenience, both equations are sought in a nondimensional form, with the time rescaled by linear 
eigenfrequencies of the undamped systems. With the fixed damping coefficient h (h = 0.1), the control parameters are 
the amplitude F and the frequency ω of the driving force. 
The oscillators belong to archetypal representative models for the analysis of inherently nonlinear phenomena and are 
often used in engineering dynamics because they model a wide class of multidimensional systems whose dynamics can 
be captured by a single active mode (e.g. buckled beams, offshore structures, buildings in earthquake etc.). In both 
cases, we confine attention to the region of the principal resonance with respect to driving force ( 1≈ω ), i.e. the region 



where the nonlinear resonance hysteresis occurs.  
In the study we use ideas and numerical techniques of the nonlinear dynamics and chaos, which lead to clear 
interpretation of the system regular and chaotic properties in particular regions of the forcing parameters. The most 
valuable in studying the related phenomena is the concept of the Poincaré return map which consists in discrete time 
sampling of the periodic motion )()(),()( TtxtxTtxtx +=+= ��  in the phase space (with the sampling time equal to the 
known excitation period ωπ2=T ), thus allowing to study the 3D flow governed by the ordinary differential equation 
by considering the associated 2D map. The idea of Poincaré map is successfully applied for the visualization of the 
basins of attraction of the stable solutions (attractors), i.e. the domains of all initial conditions in the Poincaré section 
plane whose sampled trajectories approach asymptotically the particular attractors. The geometrical representation of 
the stable and unstable invariant manifolds in the Poincaré section, in connection with the related basin-phase structure 
and the detected existence of a chaotic saddle, allows us to establish the appropriate critical thresholds of global 
bifurcations, which define the sequential build-up of chaotic system responses. 
We detect and visualize the existing chaotic saddle by plotting numerically a chaotic trajectory that never leaves the 
saddle. Such numerically obtained trajectory is referred to as a saddle straddle trajectory, and the method capable of 
finding it is known as the PIM (Proper Interior Maximum) triple method [2].  
The figures have been created using the Dynamics software [3].  
 

         
 

Fig. 1. Expansion of a chaotic saddle due to the Melnikov homoclinic bifurcation in a pendulum system (2), in the region of existence 
of a single attractor Sr  (ω = 0.84);   (a) F = 0.30;   (b) F = 0.37;   (c) F = 0.57. 

 
CONCLUDING REMARKS 

 
The phenomenon of formation of the nonattracting invariant chaotic sets (chaotic saddles) that occurs in nonlinear 
dissipative oscillators as the forcing parameter changes, and its crucial role in generating chaotic dynamics (sensitivity 
to initial conditions), is highlighted. It is shown that the phenomenon is strictly related to a sequence of the global 
(homoclinic and heteroclinic) bifurcations, i.e. transversal intersections of stable and unstable invariant manifolds of the 
particular existing unstable orbits. The lowest critical threshold of formation of a chaotic saddle is defined by the 
homoclinic bifurcation of the unstable orbit that corresponds to the potential barrier, and can be derived analytically 
(Melnikov criterion [7]). It is demonstrated that creation of a chaotic saddle manifests itself by the appearance of 
chaotic transient motions of an unpredictable, possibly long time duration. as well as that transient chaos typically 
appears at the level of control parameter values much lower than the one giving rise to a steady-state chaos (chaotic 
attractor). If two or more attractors with their basins of attraction coexist, chaotic saddle (embedded in a basin 
boundary) destroys its regular one-dimensional structure and generates fractal structure of the boundary, thus causing a 
loss of predictability of the final attractor reached. However, numerical evidence has been presented that, due to an 
existing chaotic saddle, chaotic transient motions are also generated in the case of a single attractor (Fig. 1). 
The study allows establishing critical values of forcing parameters which are important in safe engineering, i.e. which 
define the domains of the safe (regular and predictable), relatively safe (possible chaotic, but confined to the inside of 
the potential well) and unsafe (chaotic with crossing the potential barrier and so dangerous for the structure) transient 
system motion.  
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