NUMERICAL DETECTION AND CONTINUATION OF SLIDING
BIFURCATIONS IN A DRY-FRICTION OSCILLATOR

M. di Bernardo, P. Kowalczyk, P. Piiroinen
Department of Engineering Mathematics, University of Bristol, Bristol BS8 1TR, U.K.

Summary We will discuss a novel numerical method for the detection and continuation of codimension-1 sliding bifurca-
tions of limit cycles in piecewise-smooth dynamical systems. A dry-friction oscillator is used as a representative example
of relevance in applications.

INTRODUCTION

In this paper we focus our attention on numerical investigations of sliding bifurcations which are non-standard
bifurcations intrinsic to systems modelled by a set of ordinary differential equations with discontinuous right
hand side, which we can write as £ = Fy(z,u) for H(z) > 0 and & = Fy(z, u) for H(z) < 0, where Fy, F, are
sufficiently smooth vector functions and H(z) is some scalar function depending on the system states. Such
systems are known as Filippov systems [4, 7] and often model dry-friction oscillators. Discontinuous friction
characteristics gives rise to a vector field which is discontinuous across some region in the phase space.

DRY-FRICTION OSCILLATOR

We focus our attention on a representative model of dry friction oscillator, which in the non-dimensionalised
form can be written as
%+ z = sin(wt) — Fsgn(z), (1)

where z is the position, Z the velocity, and ¢ the time while w and F respectively represent the frequency and
the amplitude of the forcing term. The discontinuity set where the vector field switches between F; and F; in
(1) is defined as ¥ := {(z, %, t) € R® : H(z, &, t) = & = 0}. An intriguing feature of Filippov systems is the
possibility of exhibiting solutions evolving within X, termed as sliding motion. Sliding corresponds to a stick
phase in the dry-friction oscillator dynamics of interest [6]. We can define a vector field, say F; governing the
stick phase of the system dynamics (sliding motion) using Utkin’s equivalent control method [7]. This method
also allows to determine a sliding subset, say 3 where the system dynamics is governed by the vector field
F. Existence of the sliding subset ) may qualitatively influence the system dynamics through the occurrence
of sliding bifurcations. Sliding bifurcations are events due to the interaction of a system trajectory with the
boundary of the sliding region. As shown in [3], there are four distinct codimension-1 sliding bifurcation scenarios
of limit cycles namely: crossing sliding (Fig. 1(a)), grazing sliding (Fig. 1(b)), switching sliding (Fig. 1(c)) and
adding sliding (not depicted). Sliding bifurcations can organise complex dynamics. For example in [1] it was
shown that the grazing-sliding bifurcations scenario was responsible for the onset of chaotic stick-slip mode of
motion in the dry-friction oscillator. Therefore, it is important to be able to detect and continue branches of
sliding bifurcations. The theory allowing analysis of codimension-1 sliding bifurcations of limit cycles as well
as of the so-called degenerate codimension-2 sliding bifurcation which are organising centres for branches of
codimension-1 sliding bifurcations was developed recently in [2, 5]. However, there are no available numerical
tools for general systems allowing for the detection and continuation of sliding bifurcations. In what follows,
taking as an example the dry friction oscillator (1), we will present a novel numerical technique to allow the
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Figure 1: Bifurcation scenarios depicting the interaction of a trajectory with the boundary of the sliding region
when (a) bifurcating limit cycle switches between F; and F5 vector fields at the bifurcation point, (b) one of the
vector fields (Fy or Fy) has a point of tangency with ¥ at the boundary of 3 and (c) the vector field switches
between F; or F5 to F; at the bifurcation point.
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Figure 2: (a) A two-parameter bifurcation diagram. (b),(c) Analytical conditions for the detection of
codimension-1 (b) and codimension-2 (c) sliding bifurcations under F' and w variations, respectively. (d),(e)
The magnitude of the floquet multipliers A; along the codimension-1 branch (d) and along the ellipse (e) in

Fig. 1(a).

detection and continuation of periodic orbits in systems with sliding, to follow branches of codimension-1 sliding
bifurcations and to detect codimension-2 degenerate sliding bifurcations.

Briefly, the technique is based on the use of Newton’s method to locate periodic orbits, for which the first
variational equations are solved. Moreover, to account for the presence of switchings between different flows,
local discontinuity mapping methods are used [8]. A pseudo-arclength strategy is used for the continuation of
limit cycles in one or two parameters, which allows for continuation around fold points. Bifurcation detection
is achieved through the set of analytical conditions for the occurrence of sliding bifurcations presented in [2, 5].

Fig. 2 shows some representative numerical results. Here, a periodic orbit located at the point ’A’ in Fig. 2(a),
characterised by crossing ¥ twice per period outside of the sliding region, is continued in two-parameter space.
By using the technique described above, a crossing-sliding bifurcation was successfully detected at F' = 0.658
(see B’ in Fig. 2(a)) when the analytical condition for its detection is found to be zero (see Fig. 2(b)).

The crossing-sliding bifurcation branch was then followed in two parameters (F' and w) while monitoring the
analytical conditions for degenerate codimension-2 sliding bifurcations to occur. A codimension-2 bifurcation
was then found numerically for the first time at the point ’C’ in Fig. 2(a). (Fig. 2(c) shows the zero-crossing of
the analyical condition characterising such bifurcation).

As expected from the analysis presented in [5] we were able to locate two additional codimension-1 bi-
furcations curves branching out from ’C’ of which we continued the grazing-sliding bifurcation curve (see
Fig. 2(a)). It was found that the numerics matches the analytical expectations as the bifurcationg limit cycle
preserves its stability and period while crossing the codimension-1 bifurcation curves locally to the codimension-
2 node. This was confirmed by computing Floquet multipliers of the periodic orbit along the elipse given by

(%,F) =(2+05 cos(e),% + 0.05sin(f)) around ’C’ (see Fig. 2(a), (e)). Finally, we also present Floquet
multipliers (see Fig. 2(d)) calculated along the codimension-1 curve in Fig. 2(a).

CONCLUSIONS

Novel numerical techniques were developed for the detection and continuation of codimension-1 sliding
bifurcations of limit cycles and applied to investigate the dynamics of a representative dry-friction oscillator
model. Branches of codimension-1 sliding bifurctaions were found and continued. Furthermore, a codimension-2
bifurcation node was found. The numerical results are found to match the analytical expectations.

References

[1] M. di Bernardo, P. Kowalczyk, and A. Nordmark. Explaining the onset of complex behaviour in dry-friction oscillators.
International Journal of Bifurcations and Chaos, 13(10), 2003.
[2] M. di Bernardo, P.Kowalczyk, and A.Nordmark. Bifurcations of dynamical systems with sliding: derivation of normal

form mappings. Physica D, 170:175-205, 2002.

[3] M. L. Feigin. Forced Oscillations in systems with discontinuous nonlinearities. Nauka, Moscow, 1994. In Russian.

[4] A. F. Filippov. Differential equations with discontinuous right hand sides. Kluwer, 3300 Dordrecht, The Netherlands,
1988.

[6] P. Kowalczyk and M. di Bernardo. Two—parameter sliding bifurcations of limit cycles in filippov systems. Submitted
for publication to Physica D, June 2003.

[6] S. W. Shaw. On the dynamic response of a system with dry friction. Journal of Sound and Vibration, 108(2):305-325,
1986.

[7] V. L Utkin. Sliding Modes in Control Optimization. Springer-Verlag, Berlin, 1992.

[8] H. Dankowicz and P. T. Piiroinen. Exploiting discontinuities for stabilization of recurrent motions. Dynamical Sys-

tems, 17:317-342, 2002.



