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Summary We consider dynamics of the piecewise smooth nonlinear systems for which general methodology of reducing multidimen-
sional flows to low dimensional maps is proposed. This includes creation of the global map by stitching together local maps, which
are constructed in the smooth sub-regions of phase space. Full details are given for a case study of drifting impact oscillator where
five-dimensional flow is reduced to one dimensional (1D) approximate map. An appropriate co-ordinate transformation allowed the
drift to be de-coupled from the bounded system oscillations. For these oscillations an exact two-dimensional map has been formulated
and analysed. A further reduction to 1D approximate map is possible and will be discussed in the lecture. A standard nonlinear dynamic
analysis reveals a complex behaviour ranging from periodic oscillations to chaos, and co-existence of multiple attractors. Accuracy
of the constructed maps by comparing the dynamics responses with the exact solutions for a wide range of system parameters will be
examined.

MULTIDIMENSIONAL FLOWS

Dynamics of vast majority of physical systems can be defined as multi-dimensional flows. If these flows are described
by linear differential equations there are well developed mathematical theories, which can provide analytical solutions.
However, a good deal of multi-dimensional flows is governed by nonlinear differential equations and, in particular, piece-
wise smooth differential equations, which naturally brings complications in providing effective solutions. For example
the engineering systems with online control require simple robust models. One way of obtaining them is reduction of
differential flows to iterative maps obviously if such transformation is feasible. In the published literature there is practi-
cally no systematic examples how such maps are built, therefore, in this article a sketch of such process is provided for an
impact oscillator with drift.
We consider a drifting oscillator [1], where a mass is driven by an external force containing static and dynamic compo-
nents. The weightless slider has a linear visco-elastic pair. As reported in [1, 2] the slider drifts in stick-slip phases where
the relative oscillations between the mass and the slider are bounded and range from periodic to chaotic. The progressive
motion of the mass occurs when the force acting on the slider exceeds the threshold of the dry friction force.x, z, v
represent the absolute displacements of the mass, slider top and slider bottom, respectively. It is assumed that the model
operates horizontally, or the gravitational force is appropriately compensated. At the initial momentτ = 0 there is a
distance between the mass and the slider top called gap,e.
The considered system operates at the time in one of the following modes:No contact, Contact without progression, and
Contact with progression. A detailed consideration of these modes and the dimensional form of equations of motion can
be found in [1, 3]. As it was reported in [2] by introducing a new system of co-ordinates(p, q, v) instead of(x, z, v):

p = x− v, q = z − v, (1)

it is possible to separate the oscillatory motion from the drift. In fact, in the new co-ordinates systemp andq are displace-
ments of the mass and the slider top relative to the current position of the slider bottomv. The phase space of the bounded
system is shown in Figure 1(a). DuringNo contactmode trajectory of the system lies in vicinity of the horizontal plane
and duringContact without progressionandContact with progressionmodes it belongs to the inclined plane. The borders
of the different modes are represented by linesΣ1 − Σ4. Equations of motion for this system are given below:

p′ = y(1−H3)− 1
2ξ

(q − 1)H1H3H4 (2)

y′ = a cos(ωτ + ϕ) + b− (2ξy + q)H1H2(1−H3)−H1H3H4

q′ = yH1H2(1−H3)− 1
2ξ

(q − 1)H1H3H4 − 1
2ξ

q(1−H1)

where H1 = H(p− q − e), H2 = H(2ξy + q), H3 = H(2ξ + q − 1), H4 = H(y).

HereH(·) is Heaviside step function,y is the velocity of the mass,2ξ is a damping ratio of the slider,a cos(ωτ + ϕ)
is the dynamic andb is the static components of the external force. DuringNo contactandContact without progression
phases the slider bottom remains stationary,v′ = 0, and duringContact with progressionphase it moves with velocity
v′ = y + 1

2ξ (q − 1).
The equations of motion are linear for each phase, therefore the global solution can be constructed by joining the local
solutions at the points of discontinuities. The set of initial values(τ0; p0, y0, q0) defines in which phase the system will
operate. Ifp0 < q0 + e, it will be No contactphase. Forp0 = q0 + e, it will be Contact without progressionphase
if 0 < 2ξy0 + q0 < 1 or Contact with progressionphase if2ξy0 + q0 ≥ 1. When the conditions corresponding to the



current phase fail, the next phase begins, and the final displacements and velocities for the preceding phase define the
initial conditions for the next one. All details of the semi-analytical method allowing to calculate the responses of the
system using this method are given in [2].

LOW DIMENSIONAL MAPS

The four dimensional flow(τ ; p, y, q) can be locally three dimensional (during contact phasesp = q + e). The cross-
sections of the flow with the phase borders allows to formulate two dimensional discrete map. The borders of the different
modes of the system shown in Figure 1(a) are given as:

Σ1 = {(τi; pi, yi, qi)| pi = e, yi > 0, qi = 0}
Σ2 = {(τi; pi, yi, qi)| pi = 1 + e− 2ξyi, yi > 0, qi = 1− 2ξyi} (3)

Σ3 = {(τi; pi, yi, qi)| pi = 1 + e− 2ξyi, yi < 0, qi = 1− 2ξyi}
Σ4 = {(τi; pi, yi, qi)| pi = e− 2ξyi, yi < 0, qi = −2ξyi}

Based on the four subspaces (3), six local maps shown in Figure 1(a) can be defined as follows:

P1 : Σ1 → Σ2, P2 : Σ2 → Σ3, P3 : Σ3 → Σ4, P4 : Σ4 → Σ1, P5 : Σ1 → Σ4, P6 : Σ3 → Σ2.

Figure 1. (a) Local mappings in three dimensional phase space; (b) iteration of the approximate one dimensional map experiencing
chaos fora = 0.3, b = 0.08, ξ = 0.01, ω = 0.1, ϕ = 0, e = 0.02.

At the beginning of theContact with progressionphase four dimensional flow crosses the lineΣ2 and system dynamics
can be monitored using global two dimensional mapP : Σ2 → Σ2 which maps velocity and angular displacement
(ψ = ωτ + ϕ) at the beginning of theContact with progressionphase to themselves,(yn+1, ψn+1) = P(yn, ψn) [4].
Map P is unknown composition of the local maps, e.g it can be equal toP = P1 ◦ P4 ◦ P3 ◦ P2 or P = P6 or
P = P1 ◦P4 ◦P5 ◦P4 ◦P3 ◦P2. For the periodic external force the introduced two dimensional map is defined in the
bounded regionψn ∈ (0, 2π), yn ∈ (0, ymax) and it can be calculated numerically [4].
The detailed analysis of the considered system reveals that a further reduction to 1D approximate map is possible. It has
been found that the actual positions of the system at the end of theContact with progressionphase (points belonging to the
subspaceΣ3) are very close to the points̃Σ3 = {(τi; pi, yi, qi)| pi = 1 + e, yi = 0, qi = 1}. In this case the approximate
one dimensional mapF : Σ̃3 → Σ̃3 can be introduced. The iteration of the proposed 1D approximate map for chaotic
regime is shown in Figure 1(b).
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