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Summary This paper presents examples of chaotic motions in non-smooth mechanical systems affected by dry friction. The chaotic 
attractors are composed of zones characterized by very different rates of divergence of nearby orbits. The mechanical system 
generates one-dimensional maps the orbits of which seem to exhibit sensitive dependence on initial conditions only in an extremely 
small set of their field of definition. The Lyapunov exponent of the map is computed to characterise the steady state motions. 
 

INTRODUCTION 
 
Chaotic motions are characterised by sensitive dependence on initial conditions, that means that nearby orbits 
belonging to a chaotic attractor (and corresponding to nearly identical states) will soon behave differently [1]. Rates of 
divergence or convergence of nearby orbits are different in different zones of an attractor. Lyapunov exponents are a 
quantitative measure of the average exponential rates; they give information on the whole attractor and therefore do 
not provide any clear information on the zones where divergence rates are higher or lower. This paper aims at 
presenting an example of chaotic attractor in which it is possible to clearly identify distinct zones with different 
divergence properties. The idea of distinguishing zones in chaotic attractors with different divergence properties is not 
commonly pursued in the scientific li terature and represents an element of novelty of the present paper. 
The dynamical system under investigation is a mechanical system subjected to elastic and dry friction forces which 
exhibits many features typical of non-smooth dynamical systems as chaotic motions, non-smooth transitions and non-
smooth bifurcations [2, 3]. 
 

THE MECHANICAL SYSTEM AND ITS MAP 
 
The mechanical system 
The mechanical system investigated in this paper is shown in figure 1. It is composed of two blocks supported by a belt 
which moves with constant velocity Vdr. Elastic springs couple the blocks and connect them to a fixed support. Dry 
friction forces act between the blocks and the belt and they can be static, when the blocks ride on the belt, or kinetic, 
when the blocks slip with respect to the belt. The kinetic friction characteristic Fk is assumed to be a continuous, 
single-valued decreasing function of the velocity of the block relative to the belt [3]: 
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Where Fs, the maximum static friction force, is unity 
for block 1 and 0.9 for block 2. The blocks have the 
same mass but the system is not symmetric because of 
the difference in the maximum static friction forces. 
The    fol lowing    parameters   completely   define   
the mechanical system: m=1, k=1, k12=1.2, γ=3.0, 
Vdr=10-7. 

Figure 1 
 

 
One-dimensional map 
The 2-block stick-slip system of figure 1 can generate a one-dimensional map [3]. When both blocks are riding on the 
belt (such a phase of motion wil l be called global stick phase, g.s.p.) the relative displacement between the two blocks 
is fixed; therefore the g.s.p.’s of the system may be characterised by the constant value of a variable d: 

d=X2-X1 
The g.s.p. will finish where one of the two blocks starts slipping. Then the motion of the slipping block may trigger a 
new slipping phase also for the other block but eventually, i f Vdr is sufficiently small, both blocks will reach a 
configuration in which they ride simultaneously on the belt. The new g.s.p., in general, will be characterised by a 
value of the relative displacement d different from the one assumed during the previous g.s.p. In this way a motion of 
the system generates an infinite sequence of values of the variable d=d1, d2, d3, … , which can be interpreted as a map 
expressing dk+1 as a function of dk: 

dk+1=f(dk) 
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The 1-dimensional map is single valued because a given value of the variable d univocally determines the initial 
conditions at which one of the blocks will start slipping. The one-dimensional map will be used to describe in a 
compact way the dynamics of the two-block model; in particular it will be used to compute the main Lyapunov 
exponent of the system according to [4]. 
 

RESULTS 
 
Figure 2 shows a portion of the 1-d map generated by the system of figure 1 and two enlarged views. Note that the 
scales of the figures are different so that the main properties of the maps can be appreciated. A considerable portion of 
the map seems to be parallel to the line dk+1=dk and very close to it. When the orbit of the map is captured within that 
region, figure 2 – enlarged view ‘a’ , a large number of ‘ regular’  i terations of the map takes place. This sequence of 
regular iterations is interrupted when the orbit of the map reaches the zone where the slope of the map changes 
suddenly and in a discontinuous way (‘ chaotic’  zone), figure 2 – enlarged view ‘b’ . Then in a very small number of 
i terations the orbit is pushed back in the ‘ regular’  zone. The attractor is therefore composed of two qualitatively 
different zones: a ‘ regular zone’ , the branch ‘parallel’  to the line dk+1=dk, where neighbouring orbits do not separate 
with high rate, and a ‘chaotic zone’ , the branch with steep slopes, which separates nearby orbits and send them back 
in different positions of the ‘ regular zone’ . Note that, in the enlarged view ‘b’ , the horizontal scale is magnified by 100 
and the almost horizontal branch to the right is the most left part of the ‘ regular zone’ . 
The dynamics of the map, and therefore of the underlying mechanical system, can be characterised by the Lyapunov 
exponent of the 1-d map [4]: 

λ=
k
1

lim
k ∞→

Σ log � f’ (dk) �  

where f’ (dk) is the derivative of the map, that can be approximately computed with suitable finite difference 
techniques. The l imit in the above expression can be evaluated by integrating the dynamics of the map for a very large 
number of iterations [4]. Figure 3 shows how the numerical computation of the Lyapunov exponent ‘ converges’  to a 
value bigger than zero. The enlarged view of figure 3 shows that the diagram of the value of the exponent versus the 
number of iterations has a saw-tooth shape due to the alternate occurrence of ‘ regular’  and ‘chaotic’  zones. Therefore 
the computation of the Lyapunov exponent confirms the idea that of an attractor composed of zones characterised by 
clearly different dynamic behaviours. Several algorithmic parameters affect the computed value of the Lyapunov 
exponent which, in the range between 400000 and 1 mill ion iterations, fluctuates between 0.0022 and 0.0028. 

    Figure 2            Figure 3 
 

CONCLUSIONS 
 

This paper describes a chaotic attractor in which the zone of high divergence rate of nearby orbits (chaotic zone) is clearly 
distinct from another zone in which the divergence rate is much lower (regular zone). In the regular zone the dynamics of the 
system is composed of long sequences of similar iterations whereas an orbit can only stay in the chaotic zone for a small 
number of iterations. The numerical calculation of the Lyapunov exponent confirms that the motion is composed of long 
regular phases interrupted by short chaotic phases. Some caution has to be used when examining the numerical results.  
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