NONLINEAR DYNAMICS OF HIGH-SPEED MILLING

Gabor Stepan, Tamas Insperger, Robert Szalai
Department of Applied Mechanics, Budapest University of Technology and Economics
Budapest, H-1111, Hungary

Summary In case of highly interrupted machining, the ratio of time spent cutting to not cutting is considered as a small parameter, and
the classical regenerative vibration mode bresks down to a smplified discrete mathematical model. The linear analysis of this discrete
model leads to the recognition of the doubling of ingtability lobes in the stability charts of machining parameters. This kind of lobe doubling
is related to the agppearance of period doubling bifurcations occurring primarily in low-immerson high-speed milling along with the
classical sdlf-excited vibrations (or secondary Hopf bifurcations). The present work investigates the nonlinear vibrations in case of period
doubling and compares this to the well-known subcritical nature of the Hopf bifurcations in turning processes. Our experimental results
draw the attention to the limitations on the highly interrupted cutting condition. The analysis of the general milling moddl requires the use
of the stability chart of the delayed Mathieu equation, which is aso constructed.

INTRODUCTION AND MODELLING

High-speed milling is one of the most preferred and efficient cutting processes nowadays. It is a challenging task for
researchers to explore its special dynamical properties, including the stability conditions of the cutting process and
the nonlinear vi brations that may occur near to the stability boundaries. These dynamical properties are mainly related
to the underlying regenerative effect in the same way asit isin case of the classical turning process. Still, some new
phenomena appear for low-immersion milling as predicted in [2,3]. These phenomena were also reported in [4,5] in
case of milling, independently from theimmersion or speed characteristics of the milling processes.

High-speed milling often means also low immersion (very small chip thickness) with relatively small number
(z = 2 to 4) of cutting edges on the tool (see Figure 1). There is either no contact between the tool and the work-
piece, or there is only one edge in contact for a (relatively short) time. In these cases, highly interrupted machining
can well approximate the whole machining process. In the simplest models of highly interrupted machining, the ratio
of time spent cutting to not cutting is a small parameter. This leads to a mechanical model where the free vibration of
the tool is perturbed periodically by an impact to the work-piece. This impact results a sudden change in the tool
oscillation velocity and it depends on the actual chip thickness, that is, on the difference of the present and the
previoustool position. In thisrespect, the model includes the classical regenerative effect described for turning in [1].
There is one major difference, though: the periods of no-contact are regulated by the cutting speed parameter.
Accordingly, high-speed milling is a kind of parametrically interrupted cutting as opposed to the self-interrupted
cutting arising in unstable turning processes.

Fig. 1. Mechanica models of high-speed milling for normal and highly interrupted cutting cases
STABILITY AND NONLINEAR VIBRATIONSOF HIGHLY INTERRUPTED CUTTING

The simplest possible, but still nonlinear highly interrupted cutting model leads to a two-dimensional
discrete mathematical model. Bifurcation analysis can be carried out along the stability limits related to period
doubling bifurcations and (secondary) Hopf bifurcations. These require centre manifold reduction and normal form
transformation. The tedious algebraic work can be carried out in closed form and leads to nonlinear phenomena
similar to the one experienced in the case of the Hopf bifurcation in the turning process. The resulting subcritical
bifurcations are presented in analytical form in the subsequent Sections. The existence of stable period two vibrations
is aso shown 'outside’ the unstable period two vibrations. The stable ones can, however, quickly bifurcate to chaotic



oscillations with increasing chip width. Thisis also shown by numerical investigation, and some analytical explanation
isalso given.
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Fig. 2. Stability chart and bifurcation diagram for highly interrupted cutting

The stability chart of Fig. 2 is presented in the plane of the dimensionless cutting speed and chip width parameters, and
it also presents the dimensionless vibration frequencies along the stability limits above the stability chart. This chart
and the corresponding spectra are all confirmed experimentally, too. Figure 2 aso presents the bifurcation diagram at
the black arrow crossing the stability boundary at aflip (period doubling) bifurcation in the stability chart.

STABILITY OF MILLING

Experiments drew the attention to the weakness of the small parameter condition on the ratio of time spent cutting to
not cutting. If this condition is not applicable, like in the case of full-immersion milling, the mathematical model
cannot be simplified to adiscrete one, and its structure remains similar to the delayed Mathieu equation:

X(t)+(d +ecost)x(t) =bx(t- 2p),
where the time-periodicity and the time delay are equal (here, the dimensionless 2p) and they are both related to the
tooth-pass period (as shown in Fig. 1. In Figure 3, the corresponding stability chart in the space of the three
parameters inherits the structure of the Incze-Strutt and the Hsu-Bhatt charts, too [6].
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Fig. 3. The stability charts of the delayed Mathieu equation and the corresponding milling process

The construction of the corresponding stability charts in the plane of the same milling parameters as before shows,
that the instability lobes related to Hopf bifurcations are actually extended by instability lenses related to the flip or
period doubling bifurcations.
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