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Summary. The propagation of ultrasonic waves in a polycrystalline aggregate is considered for a bulk sample
made of cubic crystals (e.g., Fe) and subjected to stress, the principal directions of the stress being coincident
with the axes of the orthorhombic symmetry of the macroscopic acoustoelastic properties of the sample. The
dependence of the acoustoelastic properties and texture of the bulk sample on the stress are analysed numerically.

EXTENDED SUMMARY

Some forming processes (e. g., rolling, drawing, forging) of polycrystalline aggregates (e.g., steel) are accom-
panied by plastic deformation which induces residual stresses in the materials and leaves their crystallites
(grains) in certain preferred orientations called the texture. In turn, the texture cause the symmetry of the
macroscopic acoustoelastic properties of polycrystals. In the present paper, we are interesting in the situation
where the forming processes caused the orthorhombic symmetry of the macroscopic acoustoelastic properties
of a polycrystal and induced in that residual stresses, which have been removed after finishing the forming
process. Next the stress-free bulk sample of the textured polycrystal is subjected to small applied stresses
Aa?j =1MPa,ij=1,2,3. After approaching the equilibrium deformed configuration [1], the values of the
applied stresses are increased again by the same constant and small steps Aogj and the material points of the
bulk sample approache a new equilibrium deformed configuration. Increasing the applied stresses a?j by the
steps Aagj and approaching the new equilibrium deformed configuration are repeated as many times (N =750)
as the applied stresses oy; =n - Aoj;, n=1, 2, ..., N reache the desired limiting values N - Acy;. The pur-
pose of the work is to propose a method (algorithm) of computing numerically the changes in the texture and
acoustoelastic properties as functions of a?j varying in the way described above. The method is based on the
observations and theoretical predictions confirming that the speeds at which elastic waves propagate through a
textured and prestressed body depend on the directions of the wave propagation and polarization as well as on
the texture of the body and stress to which the body is subjected. For the sake of brevity, we confine ourselves
to present here only the preliminaries of the method applied to the case of a?j being plane stresses. The problem
will be presented in detail and in more general form in [2].

To describe briefly the algorithm, an Euler orthogonal reference system 0xzizox3 with the axes 0zq, Oxy and
Oz3 is suitably chosen for the present equilibrium configuration of the material points of the sample, the axes
0z1, Oxo and Ozs being coincident with the axes of the orthorhombic symmetry. The other orthogonal ref-
erence system 0X; X5 X3 is supposed to be chosen for a single cubic crystallite, the axes being chosen in the
crystallographic directions [100], [010] and [001], respectively. The unit vectors along the directions of the axes
0z1, Oz and Ox3 as well as along the directions of the axes 0X;, 0X5 and 0X3 are denoted by e;, es, and e3
as well as by E;, E5, and Eg, respectively. Henceforth, all equations, relations and formulae are written with
locating the vector and tensor quantities as well as the orientations and coordinates to the 0zixax3 reference
system. Then the position vector x can be writen as x = (r1,z2,x3) where z; =x-e;, : = 1,2, 3. In the
subsequent considerations, the orientation of a single crystallite within the polycrystalline sample is defined by
giving the values of three Eulerian angles, 6, ¢, and ¢, of the axes 0X;, 0X5 and 0Xj3 relative to the sample
axes, 01, 0z2 and Oz3. The notations 6 (§=cos 1 (E3-e3) = cos 1£), ¢, and ¢ stand for the angle of nutation,
precession and proper rotation, respectively, where 0 < 6 < 7, 0 < ¢ < 27, 0 < ¢ < 2m. The texture of a
subdomain may be characterized by the probability density function of the crystallite orientation, p (6, ¢, ¢).
Then p (6, p, ¢) df dp dp expresses the probability that a crystallite in the subdomain of the sample has an
orientation described by the Euler angles 6, ¢, and ¢, lying in the intervals <0,0 + df) >, < ¢, ¢ + dp > and
< @, ¢ + d¢ >, respectively.

Since it is not possible to measure the phase velocity of an acoustic wave at a point x, such terms as the
local texture and local acoustoelastic properties of the sample material revealed by or deduced from the local
measurements of ultrasosonic phase velocity do not mean the texture and properties at a point x in the sample
under study but mean the texture and properties at every point of the sample material filling a subdomain
(mesodomain)  centered at the point x. Such a subdomain corresponds to the intermediary scale and has at
least the smallest size at which performing the ultrasosonic measurements is still possible. On the other hand,
the subdomain () is assumed to be enough large to contain a statistical ensemble of crystallites. The analysis
of the acoustoelastic response of the material to a dynamic loading, which is presented below, concerns also the
subdomain 2, however the texture p (6, ¢, ¢), effective elastic stiffness moduli Cgf,j; and the phase velocities of
ultrasonic waves are treated within the subdomain as independent of x .

The subsequent considerations are confined to a statistical ensemble of identical bulk samples made of the exa-
mined polycrystalline aggregate, the samples being subjected to the plane stress, 0°(x) i (1,7=1,2,3). The



principal directions of the plane stress, 0°(x),,, 0°(x) 5, =70%(x),,, 7= constant, 0°(x),, <750M Pa, coincide
with the symmetry axes 0z; and Oxs. It is considered the case when each sample is acted on by an ultrasonic
transducer oscillating with the ultrasonic angular frequency w in such a way that the assembly averaged displace-
ment response, (u(x,t)), of the polycrystalline aggregate to this dynamic loading is of the form of one of the nine
different plane displacement ultrasonic waves, (u(x,t)) =p ug exp [iknp(n - X — Vo pt)| =p ug exp [i(knpn - X — ut)]
with phase velocities V,,;,, n, p=1, 2, 3. The bracket angles (...) denote assembly averaging. The subscripts n and
p denote the directions of the propagation n (|n|=1, n=ey, e, e3) and polarization p (jn|=1, p=ey, e, €3)
of each mode being coincident with one of the axes 0z, Oxs and Ox3. up denotes the amplitude of the wave
(u(x,t)), knp stands for the wave number and k,,=w/V,,. In every heterogeneous elastic body, the ultrasonic
velocities depend on the effective density and the tensor of the so-called effective dynamic moduli of stiffness as
well as on the frequency. In the limit, as the wavelength increases to infinity (or w — 0), the dynamic effective

moduli in these relations are replaced from now by the static effective moduli C7; fk]; For the reason explained

in [3,p.385], we employ the Voigt [4] averaging procedure as a suitable one for evaluating Cgf,j; (C(xs)ijk) for

a subdomain €2, centered at x, and in this Way arrive at the following equations for evaluating CeJJ;{

CZJ;@J;:<O(XS)ZJM>5 <C(XS Ukl f dg fdg@ fdd)c xs)ljklp(g '3 )v iaj7kalaman7paq:1a 27 37
C(Xs)ijkl = t(§7 ®, ¢)mit(€7 ®, ¢)ng (57 ®, ¢)pk t(€7 ®, ¢)ql Cmnpq; z—t(§7 ®, ¢)ij € where 5 = cos0.

Cmnpq denote the elastic stiffness moduli of a single crystallite (for example, c11, ¢12 and cq4 in the case of
cubic crystallite) and ¢(&, ¢, @), stands for the components of the transformation matrix t(&, ¢, ¢) relating z;
to X;. Now we substitute the plane wave solution (u(x,t)) successively in the form of each of the nine modes
with phase velocities Vj;,4, j = 1, 2, 3, into the following equations of the considered wave motion, which is
superimposed on an equilibrium deformed configuration of the material points of the body:
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In this way we obtain the following equations, after a little analysis and utilizing some results of [1, 5],
Cii=en—2(E11—ia—28u)(r1 (€, @, 9)) =V =511, Coo=en—2(G11—i2—28)(r2(&, ¢, 8)) =V~ 0227 (1)
Csz=011 — 2(C11 — C12 — 2C44)(r3(§, @, @) = ‘/}33, C44~=544 + (11 — 12 — 281a)(ra(&, @, @) =Vay — 0227 (2)
Cs5==C1a+ (G11— 12— 2814) (r5(, @, ¢)) =Vi% — 514, 0662544+(511—512—2544)<7“6(fa @, $))=Vi5—a1; (3)
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where m=1, 2, ..., 6 and r,,(&, ¢, ) are defined by Sayers [5]. Accepting Jaynes’ [6] principle of maximum
Shannon entropy I (see Egs. (5)) as a reliable basis for the evaluation of p(&, ¢, @), we seek p(£, ¢, @) in the
form (6).
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In estimating p(§, ¢, ¢), we employ the normalization condition (1)=1 (Eqgs.5) and only three equations from
the set of Egs. (1)-(3) since only three of the six expectation values (r:(£, ¢, ¢)), t=1, 2, ..., 6, are linearly inde-
pendent on each other and, henceforth, may be involved in the problem of determining p(§, ¢, ¢) by maximizing
conditionally entropy I. 1—In Z, Ly, L3, and Ls are the Lagrangian multipliers corresponding to the mentioned
conditions. 1 — In Z corresponds to normalization condition. Egs. (1)-(6) and three linear relations between
some of (r¢(§, ¢, ¢)),t=1, 2, ..., 6, are the basis of the numerical analysis of the problem being of interest for us.
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