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Summary The study utilizes an ultrasonic travel-time technique to diagnose grid-generated turbulence produced in a wind tunnel.
The statistics of the travel-time variations of ultrasonic wave propagation along a path are used to determine some metrics of the
turbulence.

EXPERIMENTAL SET-UP
In this section we shortly discuss experimental technique and equipment. Detail description of the
experimental apparatus can be found in Andreeva and Durgin [2003]".In the experimental part of the study we utilize
ultrasonic pulses traveling in straight paths as shown in Fig. 1. The sound propagates across a grid-generated turbulence
from a transmitter to a receiver separated by a distance s. The flowmeter equation may be used to derive an expression
for a travel time ¢ of a wave traveling from the speaker to microphone.
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where f, is a travel time in the undisturbed media, U is a mean velocity, ¢ is a sound speed, u' are fluctuations of
the mean flow velocity.
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In the experiment the only parameter that is measured is a travel time of ultrasound pulses. The experiments were
carried out in the 1.75"x11.62"x45.25" test section of low turbulence, low speed open circuit type wind tunnel. The
velocity and temperature fluctuations were generated simultaneously using a heated grid. Nine cases of different

distances S for two different temperatures T =59° Fand T =159° F , are studied.

EXPERIMENTAL RESULTS

Non-heated Grid Experiments

In Fig. 2 we compare our experimental data for travel time variance firstly with theoretical results obtained by
Tooss et al.> In their work authors were investigating travel time using geometrical optics approach, which neglects all
diffraction phenomena. Secondly, we compare our results with solution of the parabolic equation for the travel time
variance of a plane wave in a moving random media, derived by means of the Rytov method and Markov
approximation for the Gaussian spectrum of medium inhomogeneities.* Comparison reveals that some of the results of
geometric acoustics are acceptable even beyond the area of the validity of the approach, which was shown analytically

by Rytov.
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However, nonlinear effects at a certain propagation distance were observed in numerical experiments by Karweit et al.*
In Fig. 3 we compare the travel-time variance with Chernoy®™er Reference source not found. ‘oqtiyates and with theoretical
estimations of second-order travel time variance by Iooss et al Brort Reference source not found. o oy heriment performed for
large distances. The departure from the linear Chernov prediction increases with travel distance. Probability densities
for the occurrence of caustics were calculated theoretically. For our experimental data we estimate the probability
density of occurrence of caustics using theory

developed by Klyatskin® and explored by Iooss®.
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Heated grid Experiments

We have developed a methodology for determination of correlation functions of turbulent velocity and sound speed
fluctuations. In order to do that the ultrasonic flowmeter equation (1) is reconsidered, where the effects of turbulent
velocity and sound speed fluctuations are included. The result is the integral equation in terms of correlation functions
for travel time, turbulent velocity and sound speed fluctuations. Experimentally measured travel time statistic data with
and without grid heating are approximated by Gaussian function and used to solve integral equation analytically in
terms of the turbulent velocity and sound speed correlations functions. Figs. 4 and 5 demonstrates correlation functions
of turbulent velocity and sound speed fluctuations obtained using developed semi-analytical methodology.
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Fourier Transform allows determination of spectrum of the turbulent velocity and sound speed fluctuations shown in
Fig. 6.
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