JOINT URBAN 2003 SURFACE ENERGY BUDGET MEASUREMENTS AND ANALYSIS

EFDP, Department of Mechanical and Aerospace Eng., Arizona State University, AZ 85287, USA

Summary
Understanding of the surface energy balance is a critical component of the correct modeling of flow in an urban environment. During the Joint Urban 2003 field campaign, extensive data were collected of the components of the surface energy. These data were analysed in an attempt to close the surface energy budget and to gain an understanding of energy partition.

INTRODUCTION

Research on air flow in urban environments is of considerable importance. Since much of humanity lives in urban settings, it is vitally important from the point of view of public safety to understand the mechanisms through which pollution and other contaminants disperse therein. The Joint Urban 2003 (JU 2003) field campaign was conducted from late June through early August in 2003 to provide data needed to increase our understanding of urban meteorology and dispersion [1, 2]. One of the important aspects that was studied by our group during JU 2003 was the efficacy of current surface energy budget schemes used in meso-scale meteorological models. The surface energy is what drives many of the flows in urban environments [3, 4], and it has been demonstrated that surface energy parameterizations of the popular mesoscale meteorological model MM5 needs improvement [5]. During JU 2003, the our group fielded a suite of instruments in order to measure the dominant components of the surface energy budget in a grassy city park located in a suburban area.

PRELIMINARY RESULTS

Two days in mid-July were chosen for analysis, considering their relatively cloud-free skies on those days. If the assumption of a vertical, one dimensional system is correct, various components of the surface energy budget (see Figure 3) are expected to be in balance. The net radiometer used is able to measure the shortwave(R_s) and longwave radiation(R_l) both facing up and down. The net radiation present at the Earth’s surface is $R_n = R_{ul} + R_{dl} - R_i^s - R_i^l$ (Figure 4). The part of the energy, R_n, which is transferred to the atmosphere does so by one of two processes: the sensible heat, and through the evaporation of water into the air, the latent heat. These were measured by turbulent flux instruments near the ground. The sonic anemometer and fine wire thermocouple are used to measure the covariance between vertical velocity (w) and temperature (T), $\overline{w'T'}$ (where $\overline{'}$ terms indicate a fluctuation, based on one minute averages). The sensible heat flux is then
\[H_s = c_p \rho \overline{u wT}, \] where \(c_p \) and \(\rho \) are the specific heat at constant pressure and the density, respectively, of dry air. The sonic anemometer is used with a Krypton hygrometer to measure the covariance between vertical velocity \((u) \) and water vapor density \((q) \), \(\overline{u wq} \). Latent heat flux is \(H_l = L_v \overline{w q} \), where \(L_v \) is the latent heat of vaporization (Figure 5). In order to close the energy budget, it is also necessary to measure the heat flux through the bottom of the control surface for the soil layer \(\text{(SHF)} \) as well as the storage in the control volume \(\text{(SSF)} \). SHF was measured by a heat flux plate located at a depth of 6.5 cm. Integrating the temperature profile of the soil yields energy storage per unit area. Differentiating this with respect to time produces the net flux required to heat or cool the upper soil layer: Soil Storage \(\text{(SSF)} \) as \[\frac{\partial}{\partial t} \int_0^{\text{depth}} c_s \rho s T(z) \, dz, \] where \(c_s \) is the specific heat of the soil, \(\rho s \) is the soil density, and \(T(z) \) is the temperature profile (Figure 6). The sum \(H_s + H_l + \text{SHF} + \text{SSF} \) is the quantity that should balance the net radiation, \(R_n \). Comparing these quantities as in Figure 7, we see consistency between the two curves. This is an indication that the measured quantities indeed do a good job of characterizing the surface energy budget in this suburban park. Further, it appears that the assumption of a vertical, one-dimensional system may be adequate to describe the surface energy budget at this experiment site.

Figure 4: Radiative fluxes for July 16 and 17

Figure 5: Sensible and latent heat fluxes for July 16 and 17

Figure 6: Soil heat fluxes for July 16 and 17

Figure 7: Comparison of \(H_s + H_l + \text{SHF} + \text{SSF} \) and \(R_n \)

ACKNOWLEDGEMENTS

Financial support of the Army Research Office and National Science Foundation is gratefully acknowledged.

References