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Summary

We investigate the two-phase mixing layer between high speed liquid and gas jets. This flow leads to the breakup of the interface
into small droplets and is the basic mechanism in atomization processes. We use Volume of Fluid methods to investigate this flow
numerically. Some recent versions of the Volume of Fluid method conserve momentum exactly, which is an advantage for the robust
simulation of very small droplets. To validate the use of these methods for the computation of the instability, we have investigated in
depth the linear stability theory. Good agreement is obtained between simulations and stability theory. We then report simulations of
the non-linear development of the instability in 3D. We use boundary conditions that allow the study of the spatial development of the
instability. The simulations show the convective character of the instability and the influence of small upstream perturbations on droplet
formation.

INTRODUCTION: THE ATOMIZATION PROBLEM

Atomization phenomena are important in combustion engines as well as in many other processes. Several mechanisms
lead to atomisation, such as upstream turbulence, cavitation and the Kelvin-Helmholtz instability in the sheared liquid-gas
interface [1, 2, 3]. The development of this instability leads to very complex structures, the study of which is the focus
of this lecture. Numerical simulation of these flows is a major challenge for large scale computational fluid dynamics.
The LMM group has developped a number of interface tracking methods, among which Volume of Fluid is particularly
of interest. Some versions of the Volume of Fluid methods conserve momentum exactly [4], which is an advantage for
the simulation of small droplets. However fundamental difficulties remain with the use of these methods. One is that
it is very difficult to simulate flows which are simultaneously at (i) large Reynolds number Re (ii) large Weber number
We (iii) large values of the density ratio p;/p, and (iv) large values of the viscosity ratio f;/y. While it is possible to
tune the codes so that large values of all the numbers are reached, doubts may reasonably remain on the accuracy of the
result. Thus it is very important to find validation cases. The comparison between linear theory and predictions of the
numerical simulations is particularly of interest here. Very few such validations exist with the exception of the work of
Tauber, Unverdi and Tryggvason [5]. Moreover, the in-depth investigation of linear theory is interesting in its own right
as it sheds light on the mechanisms of the Kelvin-Helmholtz instability.

LINEAR STABILITY THEORY

The simplest version of linear instability theory assumes a staircase-like velocity profile and the temporal development of
the instability. Viscosity is neglected. This version predicts a critical Weber number above which instability develops [6].
A more realistic theory is obtained assuming a piecewise-linear velocity profile. These profiles represent schematically
the boundary layers in the gas and in the liquid. The gas boundary layer forms in the upstream flow inside the nozzle.
After the nozzle exit, both boundary layers evolve under the action of viscosity [7, 8]. The piecewise linear profiles were
employed in the theoretical work of E. Villermaux and coworkers. The experimental and theoretical power laws agree but
the prefactors do not for axially symmetric flow [9], a result still not understood. It is interesting to note that until now
quantitative agreement was very difficult to find between linear theory and numerical simulations as well.

Recently a much more realistic linear theory of atomization was developed by Phil Yecko and one of the authors [10, 11].
It uses smoothly varying boundary layer profiles and solves the full linearized viscous equations, i.e. the Orr-Sommerfeld
equations. The error function profiles have advantages in the comparison with numerical simulation as they are slowly
varying in time at small viscosity. Excellent agreement is then obtained with the full numerical simulation for relatively
small values of the viscosity ratio. There is a large difference with the inviscid theory (Fig. 1a).

An interesting feature of the Orr-Sommerfeld theory is that one obtains, for sufficiently large Reynolds numbers, several
new instability modes [10, 11]. These modes are in some sense similar to Tollmien-Schlichting modes: some of them
tend to disappear albeit slowly for large Reynolds numbers, while one of them remains and converges very slowly to the
inviscid modes. Some of the modes are clearly related to viscous effects and seem for large We to be a continuation of the
“Hinch modes” [12].

NUMERICAL METHODS
To solve the fully nonlinear problem, we use a version of the Volume of Fluid method. The method has been thoroughly

described in several recent references [13, 4, 14]. In short, we use a volume fraction C';; to describe the fraction of liquid
filling a cell 5. The interface is reconstructed and advected at each time step. The Navier-Stokes equations with variable



viscosity and surface tension are solved for an incompressible fluid using a finite volume method on a square lattice.
Surface tension is treated by a “Continuous Surface Force” method, smoothing the surface tension term in the equations
over two or three grid cells. The incompressibility constraint is obtained using a projection method, with a multigrid
algorithm for the pressure. Details will be given in the full lecture. Agreement with linear theory is excellent when the
viscosity ratio is small. When the viscosity ratio is large, however, one needs to pay attention to the viscosity in mixed
cells. The correct exponential behavior is obtained for a mixed-cell viscosity given by the harmonic mean

pij =l Cij + g ' (1= Cij)) (1)

This expression for the mixed cell viscosity had already been proposed by Patankar and used in [15], however it is here
shown for the first time to have a large effect on the linear growth regime.

NONLINEAR DEVELOPMENT OF THE INSTABILITY

The nonlinear stages of the instability show the development of 2D sheets, followed by the growth of 3D filaments or
fingers. An example of the temporal development is shown in Figure 1a. We also use entry and exit conditions and study
the spatial development of the instability. Small perturbations are imposed near the flow entrance. These pertubations
create velocity fluctuations of the order of 10 % of the mean flow. When these perturbations are present the instability
develops in a manner similar to the experimental observations. In the absence of perturbations the nonlinear development
does not occur. This is interpreted as an effect of the convective character of the instability. We measure the size of the
detached droplets at various times in the simulation. The observed distribution of droplet sizes is exponential as observed
in the experiments.
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Figure 1. (a) Comparison of inviscid and viscous results, the parameters are Wey, = 200, Reg = 1000, pg /1 = 0.025, pg/p1 = 0.02
(b) 3D temporal growth of the instability. p,/p; = 0.1, We, = 200, Re, = 1000, the grid size is 128°.
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