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Summary  A direct method of finding a flow potential of 2-D inverse boundary-value problems is proposed. The method 
potentialities are illustrated by solving various new water impact problems. 

 
     Historically, a progress in solving the problems of free 
boundary potential flows in an exact mathematical formulation 
is based on the development of the complex variable functions 
theory. Since any analytical function meets the requirements of 
a fluid incompressibility and zero vorticity the problem is to 
find such analytical function, which satisfy to given boundary 
conditions. The problems of free boundary flows lead to mixed 
boundary conditions. A velocity modulus on the free boundary 
is known from Bernoulli/Cauchy–Lagrange integral, and a 
body shape determines the velocity direction. A conformal 
mapping method proposed by Helmholtz and Kirchhoff and 
methods developed by Zhykovsky, Levi-Chivita, Chaplygin 
are applicable for solving the problems on steady free 
boundary flows. Nonlinear problems of unsteady free flows 
remain intricate problems. Only few peculiar examples are 
presented in literature. The first is a problem of an unsteady 
cavity flow past a flat plate solved by Karman (1949) under 
condition of a fixed free boundary in time. The second is a self 
similar problem of water entry of a wedge solved by 
Dobrovol’skaya (1969).  
     We propose a way of determination of a complex function 
on its modulus and argument or its real part and argument, 
which are given on the boundary of a simply connected 
domain. In combination with Chaplygin’s singular point 
method it makes possible to determine the expressions of a 
complex velocity and a derivative of the complex potential of 
an arbitrary unsteady free boundary flow. These expressions 
contain in explicit form the modulus and the argument of the 
velocity as functions of a parameter variable and time. The 
dynamic and kinematic boundary conditions lead to a system 
of the integral and integro-differential equations for 
determination of these unknown functions.  
      At the first stage we apply this method for solving various 
water impact problems. This kind of problems contains such 
important features as nonlinearity, unsteadiness and three 
phase contact points.  
     Oblique water entry of a wedge. The self-similar solution 
that characterizes the flow about a wedge entering a liquid 
surface, originally at rest, is here considered as a reverse flow 
in a frame of reference attached to the impacting body. Let x, y 
be Cartesian co-ordinates with their origin O located at the 
contact point of the right wedge side with the free surface. The 
half-space of the ideal weightless incompressible fluid has an 
inflow velocity ∞v   and an angle γ with the y-axis. The 
sketches of the fluid domain and of the parameter space are 
shown in Figure 1a and 1b, respectively.  The deadrise angles 
on the right and left hand sides are δαπβ +−= 2/R  
and δαπβ −−= 2/L , where α2  is the wedge angle and δ  is 
the deviation angle, that is the angle between the y-axis and 
symmetry axis of the wedge. In the case of a constant entry 
velocity the self-similar variables )/(~

0tvxx = , )/(~
0tvyy =  

can be introduced so that the time dependent fluid 
domain in the physical plane is mapped into a 
stationary domain in the  yx ~,~ plane and the 
complex velocity potential 

),(),(),( tzitztzW ψφ += takes the form  

( ) ( ) ( ) [ ])~(~)~(~,,, 2
0 ziztvtzitztzW ψφψφ +=+=    (1) 

whereφ
~ are the velocity potential and ψ~  the stream 

function in the stationary plane yixz ~~~ += . 
 

 
Fig.1. Inflow of a half-plane of the liquid on an 

inclined wedge 
 
The expression of the complex velocity potential 
W~ can be found by constructing the expression of 
the complex velocity and derivation of the complex 
potential in the parameter domain. Using the 
proposed method the final expression of the 
complex velocity takes the form 
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Setting ξ=u  in equation (2), along the wetted part 
of the wedge it is ( ) RzdWd β−=~/~arg  for c<< ξ0 , 

а) physical plane 

b) parameter domain 
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and ( ) )(~/~arg LzdWd βπ −−=  for ∞<< ξc . On the free 
surface ( ηiu = ) the modulus of equation (2) equals the 
function )(ηv  which is determined later on by using the 
dynamic boundary condition. 

Analyzing the singularities of the complex potential we 
can construct the expression of derivative of the complex 
potential  

( ) ( )











+−

+

−
= ∫

∞

−

0

22
22

22
)1/12( ln1exp

1

~
ηη

η
θ

π
πµ du

d
d

u
auNu

du
Wd .  (3) 

where N  is the scale factor, and the function 
( )ns vv /arctan)( =ηθ  is expressed via the tangential )(ηsv  

and normal )(ηnv  velocity components on the free boundary. 
From equation (3) it follows that, on the wedge sides ( ξ=u ), 
the imaginary part of the complex potential is equal to zero 
while along the free boundary 

( ηiu = ) it holds 
s

n
v
v

Wd
Wd

=~Re

~Im . Thus, equation (3) satisfies the 

definition of the complex potential. 
     The following conditions: the inflow velocity, the length of 
the wetted part of the wedge side, the y-coordinate at the 
infinity at the right equals one at the left make it possible to 
determine the parameters Nca ,, . The unknown functions 

)(ηv  and )(ηθ  is determining form the dynamic and 
kinematic boundary conditions.  

 
Fig.2 Solution for oblique entry of the wedge case with 09=α  

036=γ  

 
Fig.3 Pressure distribution on the right side (s>0) and on the 
left side (s<0) of the wedge 

Oblique entry of a flat plate. This self-similar problem also 
was solved by the same way. Analyzing the flow singularities 
the expression of the complex velocity and the derivative of 
the complex potential were constructed. These expressions are 
similar to the Eq.(1) and (2). In Fig. 3 and Fig.4 are shown the 
free surface shape and pressure distribution along the flat plate. 
The black line in Fig.4 corresponds to the D.P.Wang’s linear 

theory. When the angle of attack tends to zero the 
obtained results and the results of the linear theory 
are very closely. 
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Fig.3 Solution for oblique entry of the flat plate case 
of the angle of attack 010=α and the velocity 
inclination 045=γ  
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Fig.4. Pressure distribution on the flat plate 

     Liquid wedge impacting a solid wall. The self-
similar problem was solved by the same way. This 
is a first obtained complete solution of the nonlinear 
problem. 
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Fig.5. Free boundary of a liquid wedge impacting 
the solid wall 
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Fig.6. Pressure distribution along the wall 
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