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Summary A direct method of finding a flow potential of 2-D inverse boundary-value problems is proposed. The method
potentialities are illustrated by solving various new water impact problems.

Historically, a progress in solving the problems of free
boundary potential flows in an exact mathematical formulation
is based on the development of the complex variable functions
theory. Since any analytical function meets the requirements of
a fluid incompressibility and zero vorticity the problem is to
find such analytical function, which satisfy to given boundary
conditions. The problems of free boundary flows lead to mixed
boundary conditions. A velocity modulus on the free boundary
is known from Bernoulli/Cauchy—Lagrange integral, and a
body shape determines the velocity direction. A conformal
mapping method proposed by Helmholtz and Kirchhoff and
methods developed by Zhykovsky, Levi-Chivita, Chaplygin
are applicable for solving the problems on steady free
boundary flows. Nonlinear problems of unsteady free flows
remain intricate problems. Only few peculiar examples are
presented in literature. The first is a problem of an unsteady
cavity flow past a flat plate solved by Karman (1949) under
condition of a fixed free boundary in time. The second is a self
similar problem of water entry of a wedge solved by
Dobrovol’skaya (1969).

We propose a way of determination of a complex function
on its modulus and argument or its real part and argument,
which are given on the boundary of a simply connected
domain. In combination with Chaplygin’s singular point
method it makes possible to determine the expressions of a
complex velocity and a derivative of the complex potential of
an arbitrary unsteady free boundary flow. These expressions
contain in explicit form the modulus and the argument of the
velocity as functions of a parameter variable and time. The
dynamic and kinematic boundary conditions lead to a system
of the integral and integro-differential equations for
determination of these unknown functions.

At the first stage we apply this method for solving various
water impact problems. This kind of problems contains such
important features as nonlinearity, unsteadiness and three
phase contact points.

Oblique water entry of a wedge. The self-similar solution
that characterizes the flow about a wedge entering a liquid
surface, originally at rest, is here considered as a reverse flow
in a frame of reference attached to the impacting body. Let x, y
be Cartesian co-ordinates with their origin O located at the
contact point of the right wedge side with the free surface. The
half-space of the ideal weightless incompressible fluid has an
inflow velocity v,, and an angle ) with the y-axis. The
sketches of the fluid domain and of the parameter space are
shown in Figure /a and 1b, respectively. The deadrise angles
on the right and left hand sides are f, =7/2-a+9
and f; =7/2—a -0, where2a is the wedge angle and & is
the deviation angle, that is the angle between the y-axis and
symmetry axis of the wedge. In the case of a constant entry
velocity the self-similar variables X = x/(vyt) , ¥ =y /(vot)

can be introduced so that the time dependent fluid
domain in the physical plane is mapped into a
stationary domain in the X, 7 plane and the

complex velocity
W(z,t) = @(z,t) +iw(z,t) takes the form

potential

W(z1)= gl.t)+ iv(z) = vl ) +i7 @) (1)

whereg are the velocity potential and / the stream

function in the stationary plane z =X +iy .
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Fig.1. Inflow of a half-plane of the liquid on an
inclined wedge

The expression of the complex velocity potential

W can be found by constructing the expression of
the complex velocity and derivation of the complex
potential in the parameter domain. Using the
proposed method the final expression of the
complex velocity takes the form

aw _ eumm(uj(u + CJMM
dz u+a)u-c
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Setting # = ¢ in equation (2), along the wetted part
of the wedge it is arg(dW/dE): —pr for 0<é<c,

)




ID 10580

and arg(dVIN//dZ):—(ﬁ—ﬂL) for c<&<ow . On the free
surface (# =17 ) the modulus of equation (2) equals the
function v(77) which is determined later on by using the

dynamic boundary condition.
Analyzing the singularities of the complex potential we
can construct the expression of derivative of the complex

potential

T 2 2 “
d—W:Nu””””’”u—?zexp —lj-ﬁln(n2 +u2)d77 .3
du (1+u ) 7y dn

where N is the scale factor, and the function
H(U):arctan(vs/ vn) is expressed via the tangential v (77)

and normal v, (n7) velocity components on the free boundary.
From equation (3) it follows that, on the wedge sides (u =¢),

the imaginary part of the complex potential is equal to zero
while along the free boundary

(u=1in) it holds IdeK = Thus, equation (3) satisfies the
RedW vy

definition of the complex potential.

The following conditions: the inflow velocity, the length of
the wetted part of the wedge side, the y-coordinate at the
infinity at the right equals one at the left make it possible to
determine the parameters a,c, N . The unknown functions

v(n) and 6(;) is determining form the dynamic and

kinematic boundary conditions.
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Fig.2 Solution for oblique entry of the wedge case with & = 9°
y =36°
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Fig.3 Pressure distribution on the right side (s>0) and on the
left side (s<0) of the wedge

Oblique entry of a flat plate. This self-similar problem also
was solved by the same way. Analyzing the flow singularities
the expression of the complex velocity and the derivative of
the complex potential were constructed. These expressions are
similar to the Eq.(1) and (2). In Fig. 3 and Fig.4 are shown the
free surface shape and pressure distribution along the flat plate.
The black line in Fig.4 corresponds to the D.P.Wang’s linear
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theory. When the angle of attack tends to zero the
obtained results and the results of the linear theory
are very closely.
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Fig.3 Solution for oblique entry of the flat plate case
of the angle of attack a=10° and the velocity
inclination y = 45°
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Fig.4. Pressure distribution on the flat plate

Liquid wedge impacting a solid wall. The self-
similar problem was solved by the same way. This
is a first obtained complete solution of the nonlinear
problem.

Fig.5. Free boundary of a liquid wedge impacting
the solid wall

Fig.6. Pressure distribution along the wall



