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Summary The problem of influence of parametric oscillations on dynamic systems has two particularly interesting cases — the case of
high-frequency vibrations and parametric resonance. In the case of high frequency vibration the application of averaging method alowed us
to make a conclusion that the vibration smoothes the free boundary if the direction of oscillation is not longitudinal. In the case of finite
frequency and transversal influence the continued fractions approach made possible to avoid the conventiona restriction to the case of small
viscosity and almost-resonant frequencies and effectively calculate the areas of parametric resonances. Our numerical results cover awide
range of the parameters (Marangoni number, viscosity, amplitude and frequency of the oscillation).

PROBLEM FORMULATION
We consider fluid flow in a viscid incompressible homogenous fluid layer, bounded from above by a free surface
X3 =&(X1,%2,t), and by hard or “soft” (free undeformable) wall from below, which is performing oscillations

governed by the law bcosét along the vector s=(cosg,0,sing) . The governing equations are Oberbek-Boussinesq
equations of convective motion in the moving coordinate system.

HIGH-FREQUENCY CASE

The first case studied is the case of high-frequency vibration. The amplitude is considered of order O(1/w), that is we
assume b=a/w, ais of order O(1). The averaging method is applied, asit was donein [1,2]. The unknown variables are
represented as the sum of smooth and fast components:

v=Vv(xt)+V(xt,1), p=pxt)+twp(xtr), T=T(xh)+ Zl)'l:(x,t, ), &=&(xt) +%)§(x,t, 7) Q

It is possible to express fast components through smooth ones. Substitution of achieved solutions into governing
equations leads to appearance of new terms — the vibration-induced mass force (in the case of homogenous fluid they
vanish) and vibration-induced stresses [1,2]. The resulting problem can be linearized near quasiequilibrium, resulting in
the following eigenvalue problem for the amplitudes of normal perturbations:

0'(D2 —az)v :(D2 -a? 2v, obr@ = (Dz—az)e-v
z=0:v=0PrJ, D2+ dPv = Maa2(0 +0)
(30° +0)Dv - D% =Pra?(Ca? +Ga +usatha)d o)
DA -Bi(6+J) =0,
z=1:v=Dv(D?)=0, DO=ByH=0
These equations have the single vibrational parameter 1 = (F2esin¢)2 /2, which increases the effective surface tension

C;=C +Ga/a? +ustha /a | if theangle of vibration ¢ 0. Here Re=ah/v - thevibrational Rayleigh number.
The long-wave asymptotics (a — 0) was also considered. In this case it is possible to represent unknown values as
seriesin powers of a® and obtain the terms of asymptotic form of the Marangoni number [1,2].

CASE OF FINITE FREQUENCY

For the same Oberbek-Boussinesq equations the analysis of influence of vibrations of arbitrary frequency and
amplitude was made when ¢ = 77/ 2. For detailed description refer to [3]. The problem has a quasiequilibrium:;

v0=0,p° = pgo()z.° =070 =Az +B (3)
The system for normal disturbances can be achieved, by separating variable x, excluding pressure, and introducing flow
function ¢

(D% -a®yy; =(D? -a®)%y .6, =Pr }(D? -a?)8 -a?y,
z=0:1 :0/21//, D21,// +a2¢/ :MaPr_l(e +7),
Dy —(D? - a?)Dy +2a°Dy —(Ga +ba? cos(at) +C a?)ny =0,D8 —Bi(6 +1j) =0,
z=h:y =0,Dy(D%y) =0,D8+BH =0.

(4)
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The Floquet solutions of these system are searched as an infinite sum:

Y(zt) = Zw Un(2€", 8(z,t) = Z°° & (2e" ) =e Zoo e, 5)
n=-o n=-o n=-o

Here o isthe Floquet multiplier. Expressing ¢y, &, through c, we can obtain infinite three-diagonal system for
coefficients cp , which can be written as follows:

MnCn = =0(Cn-1 *+Cn+1). 29 =bafa (6)
From this system of equationsit is possible to derive a dispersion relation in continuous fractions form:
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For the case of synchronous and subharmonic loss of stability these equations can be reduced to real form. When
o0 =0, that is, the synchronous loss of stability, (7) can be written as:
2

Req—zzm (8)
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If o=iwl/2 we get the following equation:
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These equations allow for a fast and effective numerical stability computation, including the areas of parametric
resonance.

NUMERICAL RESULTS

By  solving dispersion
equations (7)-(9) it is possible
to obtain the neutral curves
corresponding to  different
instability types.

One of the most interesting

results for the arhbitrary

frequency computation was
the discovery of enclosed
areas of parametric resonance

1 — w=1E+03 and their behaviour. These

curves do not disappear with

2 — w=5E+03 frequency increase, but move

up and right along the curve

3 — w=3E+04 of oscillatory ingtability,

which is illustrated on the

figureto the left.

a Also, the values of frequency
w were computed, for which
the results coincide with high-
frequency asymptotics[1,2].
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