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Summary The transition to convection in the Rayleigh-Bénard problet small Knudsen numbers is studied via a linear stabil-
ity analysis of the compressible 'slip-flow’ problem. No trégtions are imposed on the magnitudes of temperaturerdifice and
compressibility-induced density variations. Comparisdrthe results with existing DSMC and continuum non-linemnigations
demonstrates that the present analysis correctly pretietboundaries of the convection domain. This offers theairtemporal
stability analysis as a viable means of studying the effettse various parameters on the onset of convection.

INTRODUCTION

The onset of convection in an initially quiescent fluid coatirbetween parallel horizontal walls and heated from below
is a classical problem in hydrodynamic stability theory é8tirasekhar 1961). This problem has been investigated ex-
tensively within the framework of the Boussinesq approttiorawhere fluid-density variations are only considered in
the buoyancy term of the equation of motion. This approxiomais based on the assumptions that relative temperature
differences and density variations owing to compressykdiie both small. Each of the relatively few analyses whiaveh
hitherto addressed the corresponding compressible-flobMgm have relaxed either one but not both of these assump-
tions. Thus, Frohlich, Laure and Peyret (1992) studied ffects of large temperature differences while retaining th
assumption that compressibility-induced density vasiaiwere negligible. Bormann (2001), among others, coresite
compressibility effects assuming small temperature difiees and hence constant transport (i.e. viscosity amchéhe
conductivity) coefficients. In both cases the results iaticdhat the compressible-fluid system is less unstablettiean
comparable predictions based on the Boussinesq appraaimdb the best of our knowledge, no comprehensive treat-
ment of compressible-fluid stability problem exists in therhture even within the context of continuum gas-dynamic
Thus, addressing this problem without a priori restricting relative temperature differences or compressibitijuced
density variations is one of the main objectives of the presentribution.

The Rayleigh-Bénard (RB) problem for rarefied gases has &te€lned in recent years principally by means of the Direct
Simulation Monte Carlo (DSMC) method (see Stefanov, Rowss& Cercignani 2002, hereafter referred to as SRC, and
references cited therein). These numerical simulatiotiewiahe evolution of the macroscopic (hydrodynamic) fields
through their terminal states. The results demonstratestaificant convection only occurs in the continuum limit o
small O(10)~2 Knudsen numbers. However, 'noisy’ elements inherent in @SMake it difficult to characterize the
final states, particularly for parameters combination icinity of the transition to convection. Furthermoresse
simulations become extremely time consuming in the coantimlimit, which obstruct an accurate delineation of the
domain of instability. An alternative approximate anadysf the onset of RB convection at sm&lln numbers thus
constitutes our main goal.

PROBLEM STATEMENT AND ANALYSIS

In view of the above we focus on the continuum limit. The comiyeaccepted model in this limit is the 'slip-flow’
problem consisting of the familiar continuum (i.e. conitguNavier-Stokes and energy) equations in conjunctiottn wi
first-order velocity-slip and temperature-jump conditiai the boundaries (which represent the effects of sligkfae-
tion). The parameters governing this problem are the Knug&e:) number representing the ratio of the microscopic
(the mean free path) and macroscopic (the distance betlveavetls) scales, the FroudE«f) number characterizing the
relative magnitude of the thermal-inertial and gravitatibeffects, andrr, the ratio of the upper (cold)- and lower (hot)-
wall temperatures. This is in marked contrast to the abogatimned Boussinesq problem which is exclusively governed
by the Rayleigh number (which in the present notation isrisely proportional ta"r Kn?). No assumptions restricting
the respective magnitudes of the temperature differenusa@ampressibility effects are made. This allows us to a®rsi
the relevant (according to existing DSMC results) domaiparimeters.

In a simple monatomic gas consisting of hard-sphere madsdhle viscosity and thermal conductivity are both propor-
tional to the square root of the absolute temperature. Fotav of molecular interaction we make use of the closedafor
expressions obtained by SRC for the reference 'pure coimtistate. A linear temporal stability analysis is perfamun
assuming small three-dimensional perturbations whiclspagially harmonic in planes parallel to the walls and liiea

ing the governing equations and boundary conditions alheuabove reference state. However, owing to symmetry , the
resulting problem is essentially two-dimensional in a igettplane parallel to the wave-number vector. The dispersi
relation providing the growth rate of perturbatianss a function of their wave-numbérand the above set of param-
eters (Kn, F'r and Rr) is calculated by transforming the system of ordinary défeial perturbation equations into an
algebraic eigenvalue problem via application of the Chiabygollocation method.
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Division of the plane of parametef$'r, K'n) into unstablgU) and stabl€S) domains forR; = 0.1 according to the
present theory (solid line) together with DSMC (circlesfl@ontinuum (squares) results of SRC. Also marked are the
large+'r asymptoteRa ~ 1773 (dashed line), the initial appearance of non-monotonieabdy distribution
(dash-dotted line) and the necessary condition for thetafs®nvection (cross-hatched line).

RESULTS AND DISCUSSION

Throughout the entire domain of parameters our calculatiovariably yield real-valued.. Accordingly, the onset of
convection takes place via "exchange of stabilities" (Chasekhar 1961), i.ev = 0. In the following we focus on a
temperature rati®; = 0.1 so as to facilitate comparison with the results of SRC.

The solid line in the attached figure separates the planerahpaters F'r, K'n) into respective domains of stablg)(

w < 0, and unstablel(), w > 0, response. Also presented are the corresponding DSMQe@jrand continuum finite-
difference (squares) results of SRC, the laFyeasymptote FrKn? ~ 3.65 x 10~3, dashed line), the dash-dotted line
marking the locus of states where non-monotonical denstyildutions initially appear in the pure-conduction mefiece
state and the cross-hatched line corresponding to thesmgaondition for instability related to compressibiityduced
density variations (see the discussion below).

For all Kn > 0 the convection domain is confined to a finite interval of F@andimbers. The extent of this interval is
rapidly diminishing with increasing{n, vanishing entirely folrn >~ 0.029. WhenKn ~< 0.01 (andFr > 1), the
right branch of thé/-domain boundary is approaching the dashed line. In thig Gompressibility effects are negligible
and the asymptote corresponds to a constant Rayleigh nybdsed on the arithmetic mean of wall temperatufes)
1773. This coincidence with a critical value dta which is larger than the Boussinesq valae {708) is in qualitative
agreement with the results of Fréliehal. (1992).

Considering the left branch of tlé-domain boundary, we note that for &lln <~ 0.02 this boundary is disposed to the
left of the dash-dotted line. Indeed, transition to coni#ctay take place in a compressible fluid even when the fluid
density in the reference state is monotonically decrea@ogmann 2001). Thus, convection may set in provided that
adiabatic expansion of a fluid element rising through theresfce hydrostatic pressure field reduces its density bblew
ambient reference density (Landau and Lifshitz 1959). THeesshatched line in the figure presents the locus of points
where this condition is initially satisfied. The analysiading to this criterion does not consider the retardingot$fef
fluid viscosity and heat conductivity, hence it is in factyalnecessary condition for the onset of convection.

In view of the vastly different methods of calculation (agarized eigenvalue problem as opposed to a non-linealiniti
value problem), the close agreement between the preseitisraad those of SRC is gratifying. The largest differences
between the respective results appear at the lower portitreaight branch of the boundary of the convection domain
and may be attributed to non-linear (hysteresis) phenomiizh are obviously absent from the present linear analysis
Traversing the rest of the boundary of thedomain we observe that the differences between the prasenamnd the
results of SRC are comparable to the differences betweéanviim@us schemes. The linear analysis thus offers a useful
alternative in studying the effects of various parametetsraodels of molecular interaction on the onset of convactio
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