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Summary The transition to convection in the Rayleigh-Bénard problem at small Knudsen numbers is studied via a linear stabil-
ity analysis of the compressible ’slip-flow’ problem. No restrictions are imposed on the magnitudes of temperature difference and
compressibility-induced density variations. Comparisonof the results with existing DSMC and continuum non-linear simulations
demonstrates that the present analysis correctly predictsthe boundaries of the convection domain. This offers the linear temporal
stability analysis as a viable means of studying the effectsof the various parameters on the onset of convection.

INTRODUCTION

The onset of convection in an initially quiescent fluid confined between parallel horizontal walls and heated from below
is a classical problem in hydrodynamic stability theory (Chandrasekhar 1961). This problem has been investigated ex-
tensively within the framework of the Boussinesq approximation where fluid-density variations are only considered in
the buoyancy term of the equation of motion. This approximation is based on the assumptions that relative temperature
differences and density variations owing to compressibility are both small. Each of the relatively few analyses which have
hitherto addressed the corresponding compressible-flow problem have relaxed either one but not both of these assump-
tions. Thus, Fröhlich, Laure and Peyret (1992) studied the effects of large temperature differences while retaining the
assumption that compressibility-induced density variations were negligible. Bormann (2001), among others, considered
compressibility effects assuming small temperature differences and hence constant transport (i.e. viscosity and thermal
conductivity) coefficients. In both cases the results indicate that the compressible-fluid system is less unstable thanthe
comparable predictions based on the Boussinesq approximation. To the best of our knowledge, no comprehensive treat-
ment of compressible-fluid stability problem exists in the literature even within the context of continuum gas-dynamics.
Thus, addressing this problem without a priori restrictingthe relative temperature differences or compressibility-induced
density variations is one of the main objectives of the present contribution.
The Rayleigh-Bénard (RB) problem for rarefied gases has beenstudied in recent years principally by means of the Direct
Simulation Monte Carlo (DSMC) method (see Stefanov, Roussinov & Cercignani 2002, hereafter referred to as SRC, and
references cited therein). These numerical simulations follow the evolution of the macroscopic (hydrodynamic) fields
through their terminal states. The results demonstrate that significant convection only occurs in the continuum limit of
smallO(10)−2 Knudsen numbers. However, ’noisy’ elements inherent in DSMC make it difficult to characterize the
final states, particularly for parameters combinations in the vicinity of the transition to convection. Furthermore, these
simulations become extremely time consuming in the continuum limit, which obstruct an accurate delineation of the
domain of instability. An alternative approximate analysis of the onset of RB convection at smallKn numbers thus
constitutes our main goal.

PROBLEM STATEMENT AND ANALYSIS

In view of the above we focus on the continuum limit. The commonly-accepted model in this limit is the ’slip-flow’
problem consisting of the familiar continuum (i.e. continuity, Navier-Stokes and energy) equations in conjunction with
first-order velocity-slip and temperature-jump conditions at the boundaries (which represent the effects of slight rarefac-
tion). The parameters governing this problem are the Knudsen (Kn) number representing the ratio of the microscopic
(the mean free path) and macroscopic (the distance between the walls) scales, the Froude (Fr) number characterizing the
relative magnitude of the thermal-inertial and gravitational effects, andRT , the ratio of the upper (cold)- and lower (hot)-
wall temperatures. This is in marked contrast to the above-mentioned Boussinesq problem which is exclusively governed
by the Rayleigh number (which in the present notation is inversely proportional toFrKn2). No assumptions restricting
the respective magnitudes of the temperature differences and compressibility effects are made. This allows us to consider
the relevant (according to existing DSMC results) domain ofparameters.
In a simple monatomic gas consisting of hard-sphere molecules the viscosity and thermal conductivity are both propor-
tional to the square root of the absolute temperature. For this law of molecular interaction we make use of the closed-form
expressions obtained by SRC for the reference ’pure conduction’ state. A linear temporal stability analysis is performed
assuming small three-dimensional perturbations which arespatially harmonic in planes parallel to the walls and lineariz-
ing the governing equations and boundary conditions about the above reference state. However, owing to symmetry , the
resulting problem is essentially two-dimensional in a vertical plane parallel to the wave-number vector. The dispersion
relation providing the growth rate of perturbationsω as a function of their wave-numberk and the above set of param-
eters (Kn, Fr andRT ) is calculated by transforming the system of ordinary differential perturbation equations into an
algebraic eigenvalue problem via application of the Chebyshev collocation method.
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Division of the plane of parameters(Fr,Kn) into unstable(U) and stable(S) domains forRT = 0.1 according to the
present theory (solid line) together with DSMC (circles) and continuum (squares) results of SRC. Also marked are the

large-Fr asymptoteRa ≈ 1773 (dashed line), the initial appearance of non-monotonical density distribution
(dash-dotted line) and the necessary condition for the onset of convection (cross-hatched line).

RESULTS AND DISCUSSION

Throughout the entire domain of parameters our calculations invariably yield real-valuedω. Accordingly, the onset of
convection takes place via "exchange of stabilities" (Chandrasekhar 1961), i.e.ω = 0. In the following we focus on a
temperature ratioRT = 0.1 so as to facilitate comparison with the results of SRC.
The solid line in the attached figure separates the plane of parameters(Fr,Kn) into respective domains of stable (S),
ω < 0, and unstable (U ), ω > 0, response. Also presented are the corresponding DSMC (circles) and continuum finite-
difference (squares) results of SRC, the large-Fr asymptote (FrKn2 ≈ 3.65× 10−3, dashed line), the dash-dotted line
marking the locus of states where non-monotonical density distributions initially appear in the pure-conduction reference
state and the cross-hatched line corresponding to the necessary condition for instability related to compressibility-induced
density variations (see the discussion below).
For allKn > 0 the convection domain is confined to a finite interval of Froude numbers. The extent of this interval is
rapidly diminishing with increasingKn, vanishing entirely forKn >≈ 0.029. WhenKn ≈< 0.01 (andFr � 1), the
right branch of theU -domain boundary is approaching the dashed line. In this limit compressibility effects are negligible
and the asymptote corresponds to a constant Rayleigh number(based on the arithmetic mean of wall temperatures)Ra ≈

1773. This coincidence with a critical value ofRa which is larger than the Boussinesq value (≈ 1708) is in qualitative
agreement with the results of Frölichet al. (1992).
Considering the left branch of theU -domain boundary, we note that for allKn <≈ 0.02 this boundary is disposed to the
left of the dash-dotted line. Indeed, transition to convection may take place in a compressible fluid even when the fluid
density in the reference state is monotonically decreasing(Bormann 2001). Thus, convection may set in provided that
adiabatic expansion of a fluid element rising through the reference hydrostatic pressure field reduces its density belowthe
ambient reference density (Landau and Lifshitz 1959). The cross-hatched line in the figure presents the locus of points
where this condition is initially satisfied. The analysis leading to this criterion does not consider the retarding effects of
fluid viscosity and heat conductivity, hence it is in fact only a necessary condition for the onset of convection.
In view of the vastly different methods of calculation (a linearized eigenvalue problem as opposed to a non-linear initial
value problem), the close agreement between the present results and those of SRC is gratifying. The largest differences
between the respective results appear at the lower portion of the right branch of the boundary of the convection domain
and may be attributed to non-linear (hysteresis) phenomenawhich are obviously absent from the present linear analysis.
Traversing the rest of the boundary of theU domain we observe that the differences between the present line and the
results of SRC are comparable to the differences between their various schemes. The linear analysis thus offers a useful
alternative in studying the effects of various parameters and models of molecular interaction on the onset of convection.
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