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Summary A new mean-field theory of turbulent convection is developed. In a shear-free turbulent convection the theory predicts
the convective wind instability which causes formation of large-scale semi-organized fluid motions in the form of cells. The theory
predicts also the convective-shear instability in a sheared turbulent convection which results in appearance of large-scale semi-organized
convective rolls. This instability can cause also a generation of convective-shear waves which have a nonzero hydrodynamic helicity.
The increase of shear promotes excitation of the convective-shear instability. Predictions of this theory are in a good agreement with
the modern knowledge about the atmospheric convective boundary layer and observed semi-organized structures.

In the last decades it has been recognized that the very high Rayleigh number atmospheric convective boundary layer (CBL) has more
complex nature than might be reckoned. Besides the fully organized component naturally considered as the mean flow and the chaotic
small-scale fluctuations, one more type of motion has been discovered, namely, long-lived large-scale structures, which are neither
turbulent nor deterministic [1,2]. These semi-organized structures considerably enhance the vertical transport and render it essentially
non-local in nature. In the atmospheric shear-free convection, the structures represent three-dimensional Benard-type cells (cloud cells)
composed of narrow uprising plumes and wide downdraughts. They embrace the entire convective boundary layer (~ 2 km in height)
and include pronounced large-scale (~ 3 km in diameter) convergent flow patterns close to the surface [1,2]. In sheared convection,
the structures represent CBL-scale rolls (cloud streets) stretched along the mean wind. Life-times of the semi-organized structures are
much larger than the turbulent time scales [1,2]. Thus, these structures can be treated as comparatively stable, quasi-stationary motions,
playing the same role with respect to a small-scale turbulence as the mean flow.

In spite of a number of studies, the nature of large-scale semi-organized structures is poorly understood. The Rayleigh numbers, Ra,
based on the molecular transport coefficients are very large (of the order of 10*! — 10'®). This corresponds to fully developed turbulent
convection in atmospheric flows. At the same time the effective Rayleigh numbers, based on the turbulent transport coefficients are
not high, e.g., they are less than the critical Rayleigh numbers required for the excitation of large-scale convection. Therefore, the
emergence of large-scale structures which are observed in the atmospheric flows seems puzzling.

The main goal of this study is to suggest a mechanism for formation of large-scale semi-organized structures. Traditional theoretical
models of the boundary-layer turbulence, such as the Kolmogorov-type closures and similarity theories (e.g., the Monin-Obukhov
surface-layer similarity theory) imply two assumptions: (i) Turbulent flows can be decomposed into two components of principally
different nature: fully organized (mean-flow) and fully turbulent flows. (ii) Turbulent fluxes are uniquely determined by the local mean
gradients. For example, the turbulent flux of entropy (or potential temperature) is given by (su) = —k7V .S, where kr is the turbulent
thermal conductivity, S is the mean entropy, u and s are fluctuations of the velocity and entropy, respectively. However, the mean
velocity gradients can affect the turbulent flux of entropy. The reason is that additional essentially anisotropic velocity fluctuations can
be generated by tangling of the mean-velocity gradients with the Kolmogorov-type turbulence. The source of energy of this "tangling
turbulence™ is the energy of the Kolmogorov turbulence. The tangling turbulence is strongly anisotropic and has a steeper spectrum
(x k*7/3) than a Kolmogorov turbulence. The anisotropic velocity fluctuations of tangling turbulence were studied in the first by
Lumley (1967). It is shown in this study that the tangling turbulence can cause formation of semi-organized structures due to the
excitation of large-scale instability. In particular, the tangling turbulence contributes to the turbulent flux of entropy. Calculations based
on the Navier-Stokes equation and the entropy evolution equation formulated in the Boussinesq approximation yield the following
expression for the turbulent flux of entropy ® = (su):

d = D — (10/6)[5(V - fh)@‘j — (a+3/2)(@><<I>‘T) —3(®, x®")], (1)
where U = U, + U.e is the mean velocity, e is the vertical unit vector, @ = V xU is the mean vorticity, @, = w.eis the
vertical mean vorticity, 7o is the correlation time of the Kolmogorov turbulence corresponding to the maximum scale of turbulent
motions, ®* is the turbulent flux of entropy which is caused by the contribution of the Kolmogorov turbulence and it is independent
of the mean velocity gradients V;U;, ®| = ®.e = —krV.5, a = (1 4 4€)/(1 + £/3) is the degree of thermal anisotropy of

the background turbulent convection (without mean-velocity gradients), & = (11 /lz)z/ 3 — 1. The turbulent flux of entropy can be
obtained even from simple symmetry reasoning. Here [, and [, are the horizontal and vertical scales in which the correlation function
cpi”(r) = (s(x) u.(x + r)) tends to zero. In the isotropic case, [ = [, the parameter ¢ = 0 and @ = 1. For [, < [, the parameter
&= —1and a« = —9/2. The maximum value &max Of the parameter £ is Emax = 2/3 for a = 3. Thus, for o < 1 the thermal structures
have the form of columns or thermal jets (1. < [.), and for o > 1 there exist the “’pancake” thermal structures (I, > I.) in the
background turbulent convection.

Now let us discuss the mechanisms of formation of semi-organized structures by a large-scale instability. The mechanism of the
convective wind instability, associated with the second term ® o« —7oa(V - fh)lI)‘T in the expression for the turbulent flux of
entropy [see Eqg. (1)], in the shear-free turbulent convection at o > 0 is as follows. Perturbations of the vertical mean velocity
U, with 90U, /0z > 0 have negative divergence of the horizontal velocity , i.e., div U, < 0 (provided that div U = 0). This
results in the vertical turbulent flux of entropy and causes an increase of the mean entropy. On the other hand, the increase of the
mean entropy increases the buoyancy force and results in the increase of the vertical velocity U, and excitation of the large-scale
instability. Similar phenomenon occurs in the regions with U, /92 < 0 whereby div U, > 0. This causes a downward flux of the
entropy and the decrease of the mean entropy. The latter enhances the downward flow and results in the instability which also causes
formation of a large-scale semi-organized convective cell structure (convective wind). Thus, nonzero div U causes redistribution
of the vertical turbulent flux of entropy and formation of regions with large vertical fluxes of entropy. Thereby the regions with



div U < 0 are separated by the regions with low vertical flux of entropy with div U > 0. This results in a formation of a large-scale
circulation of the velocity field. Another mechanism of the convective wind instability is associated with the third term [proportional to
(a+ 3/2)(wx<I>F )] in the expression (1) for the turbulent flux of entropy when e < —3/2. This term describes the horizontal flux of
the mean entropy. The latter results in increase (decrease) of the mean entropy in the regions with upward (downward) fluid flows. On
the other hand, the increase of the mean entropy causes the increase of the buoyancy force, the mean vertical velocity U, and the mean
vorticity &. Hence the large-scale convective wind instability is excited. The second term in the turbulent flux of entropy at oo < —3/2
causes a decrease of the growth rate of the instability because, when o < —3/2, it implies a downward turbulent flux of entropy in the
upward flow. This decreases both, the mean entropy and the buoyancy force. Note that, when o« < —3/2, the thermal structure of the
background turbulence has the form of a thermal column. Our analysis, based on the linearized momentum equation and the equation
for the entropy with the derived expression for the turbulent flux of entropy (1), showed that the growth rate ~yins Of the convective
wind instability of long-wave perturbations [3 = (1o K)™2 > 1] is given by yinst o< vr K2 /B |sin 6| [ — 3/8 — (5a/4) sin? 6]*/2
where 6 is the angle between e and the large-scale wave vector K of small perturbations, v is the turbulent viscosity and Iy is the
maximum scale of turbulent motions. We considered here an isentropic basic reference state. For large 3 the growth rate of the
instability is proportional to the wave number K (i.e., vinst o< Kuo) and the instability occurs when o(5cos? @ — 1) > 3/2. Here
ug is the characteristic turbulent velocity in the maximum scale of turbulent motions. Thus there are two ranges for the excitation of
the instability, i.e., the first range is for .. < o < 3 and the second range is for —9/2 < a < a., where .. = 3/[2(5cos? 8 — 1)],
and we took into account that the parameter « varies in the interval —9/2 < « < 3. The first range for the instability corresponds
to the angles 3/10 < cos® @ < 1 (the aspect ratio 0 < L./L, < 1.5), and the second range for the instability corresponds to the
angles 0 < cos® 6 < 2/15 (the aspect ratio 2.6 < L./L, < oo), where L./L, = K /K. = tan . Our analysis showed that the
maximum growth rate of the instability is attained at the scale of perturbations L, ~ 101y, and the characteristic time of excitation of
this instability is of the order of (20 — 30) 7. Thus the typical length and time scales of the convective-wind motions are much larger
than the turbulence scales. This justifies separation of scales which is required for the description of the semi-organized structures in
terms of a mean flow.

In a sheared turbulent convection the mechanism of the convective-shear instability is associated with the last term in the expression (1)
for the turbulent flux of entropy [® o 70(@ x®")]. Here & = ®e — T0®%(dU® (2)/dz), the second term in the expression for
®* describes the counter-wind heat flux and TU(® (2) is the imposed horizontal large-scale flow velocity (e.g., a wind velocity). The
mechanism of the convective-shear instability is as follows. The vorticity perturbations generate perturbations of entropy. Indeed, for
two vortices with opposite directions of the vorticity O, the turbulent flux of entropy is directed towards the boundary between the
vortices. The latter increases the mean entropy between the vortices. Such redistribution of the mean entropy causes increase of the
buoyancy force and formation of upward flows between the vortices. These vertical flows generate vorticity. Thus the convective-shear
instability is excited. The growth rate of the instability of long-wave perturbations is given by vine: ~ v K2(3Asin? 6)%/2, where we
considered turbulent convection with a linear shear U® = (\/7) z e, and a nonzero vertical flux of entropy ® = & e. Here \ is a
dimensionless parameter which characterizes the shear. This instability causes formation of large-scale semi-organized fluid motions in
the form of rolls align along the imposed mean velocity U(®). The instability can also result in generation of the convective-shear waves
with the frequency Q ~ /3vrK?(B3Xsin? 0)%/3. These convective-shear waves propagate perpendicular to convective rolls. This
finding is in agreement with observations in the atmospheric convective boundary layer, whereby the waves propagating perpendicular
to cloud streets have been detected [3]. Remarkably, that the flow in the convective-shear wave has a nonzero hydrodynamic helicity.
For perturbations with K, = 0 the convective-shear instability does nor occur. However, for the perturbations with K, = 0, the
convective wind instability can be excited, and it is not accompanied by the generation of the convective-shear waves. Our analysis
showed that there are two ranges for the excitation of the instability. However, even a small shear causes an overlapping of these two
ranges, and the increase of shear (\) promotes the convective-shear instability with the growth rate ~ins, o< K2/3, and the frequency
of the generated convective-shear waves is  oc K2/3 .

Now let us compare the obtained results with the properties of semi-organized structures observed in the atmospheric convective
boundary layer. The semi-organized structures are observed in the form of rolls (cloud streets) or three-dimensional convective cells
(cloud cells). Rolls usually align along or at angles of up to 10° with the mean horizontal wind of the convective layer, their lengths
vary from 20 to 200 km, the widths from 2 to 10 km, and convective depths from 2 to 3 km [1,2]. The typical value of the aspect ratio
L,/L, =~ 0.14 — 1. The ratio of the minimal size of the structure to the maximum scale of turbulent motions L/l, = 10 — 100. The
characteristic life time of rolls varies from 1 to 72 hours. Rolls may occur over water surface or land surfaces. The suggested theory
predicts the following parameters of the convective rolls: the aspect ratio L. /L ranges from very small to 1, and L/lo = 10 — 100.
The characteristic time of formation of the rolls ~ 7o /~inst Varies from 1 to 3 hours. The life time of the convective rolls is determined
by a nonlinear evolution of the convective-shear instability. The latter is a subject of a separate ongoing study. Convective cells may be
divided into two types: open and closed [1]. Open-cell circulation has downward motion and clear sky in the cell center, surrounded by
cloud associated with upward motion. Closed cells have the opposite circulation. Both types of cells have diameters ranging from 10
to 40 km and aspect ratios L. /L = 0.05 — 1, and both occur in a convective layer with a depth of about 1 to 3 km [1,2]. The ratio of
the minimum size of the structure to maximum scale of turbulent motions L/lo = 5 — 20. The developed theory predicts the following
parameters of the convective cells: the aspect ratio L. /L ranges from very small to 1, and L/lo = 5 — 15. The characteristic time of
formation of the convective cells ~ 7o /7inst Varies from 1 to 3 hours. Therefore the predictions of the developed theory are in a good
agreement with observations of the semi-organized structures in the atmospheric convective boundary layer.
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