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Summary The experiments of Hof, Mullin and Lucas on Rayleigh-Bénardconvection in a cylindrical system are simulated numerically
using a pseudospectral three-dimensional code. We confirm that for their parameter values, there exist multiple stablesolutions. Starting
from a perturbed conductive state, we obtain different finalpatterns, depending on the Rayleigh number. We then use these flows to
initialize the simulations for other Rayleigh numbers. In this way we obtain many different stable solutions for the same Rayleigh
number – two, three or four parallel rolls, a three-spoke pattern and even an axisymmetric state.

CYLINDRICAL RAYLEIGH-BÉNARD CONVECTION

The Rayleigh-Bénard instability in a fluid layer heated frombelow and cooled from above is one of the most ancient and
well-known prototypes of pattern formation. When the horizontal dimensions are comparable to the height of the fluid, the
shape of the container plays a crucial role in determining the patterns formed. In a vertical cylinder, the Rayleigh number
thresholds for onset of convection from the motionless conductive state have been already well described [1]. Secondary
bifurcations leading to other patterns have been studied numerically for a few cases [2, 3, 4, 5]. Experiments by Hofet
al.[6] produced a large number of convective patterns by increasing and decreasing the Rayleigh number in a variety of
ways. For example, five different patterns could be obtainedat Ra = 14200. Our aim is to reproduce, understand, and
extend these results.

NUMERICAL SIMULATION

In our numerical code [7], the Navier-Stokes equations are integrated by a classical pseudospectral method, where the
velocity and temperature fields are represented using Chebyshev polynomials in the radial and vertical directions and
Fourier series in the azimuthal direction. The number of gridpoints or modes is 36 in the radial, 80 in the azimuthal
and 18 in the vertical direction. The time-stepping scheme is the Adams-Bashforth formula for the nonlinear term and
Crank-Nicolson formula for the linear term. An influence matrix method was used to impose incompressibility.
Matching the parameters in [6], we set the Prandtl numberPr ≡ viscosity/thermal diffusion to 6.7 (that of water) and
the aspect ratioΓ ≡ radius/height to 2.0. We have performed a sequence of simulations, varying the initial state and the
Rayleigh number, in order to find the asymptotic state for each configuration.

RESULTS

Sudden start from a quasi-conductive state
We initialized the simulations with a perturbed conductivesolution satisfying the boundary conditions. Depending onthe
Rayleigh number, this state evolves towards different flows– see the left part of the diagram on fig. 2.
ForRa . 1900, the initial perturbation decays to zero, resulting in the conductive state. ForRa near2000, the final state
is a convective state with symmetryD2, which we will call the ‘pizza state’ (see fig. 1f). ForRa between3000 and9000,
the system evolves towards a four-roll state. For Rayleigh numbers between10000 and20000, the final solution is always
a three-roll state, whose roll boundaries become thinner and more curved with increasingRa. Finally, for Ra ≈ 23000,
the final pattern consists of three radial spokes that we willrefer to as the ‘mercedes pattern’.

Evolution from convective states
We now use the convective states described above as initial states and change the Rayleigh number. The results of the
simulations are represented on fig. 2. For example, we used the mercedes pattern obtained forRa = 23000 as an initial
field at Ra = 15000. The resulting final solution was still of mercedes form. In other words, the Rayleigh number
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Figure 1. Stable steady flows obtained by the nonlinear simulation. Temperature variation on a horizontal slice at mid-height of the
cylinder. Dark areas represent hotter ascending fluid and bright areas colder descending fluid. For each flow, there also exists an
equivalent form, in which the signs of the temperature variation and vertical velocity are reversed.
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Figure 2. Schematic diagram of the dependence of the final flow pattern on Rayleigh number and on initial state. A first series of
simulations used a perturbed conductive state as initial condition over a range ofRa to obtain the patterns listed in the first column. A
second series used these patterns as initial conditions, altering the value ofRa. ForRa = 14200 we obtain five different final states,
including an axisymmetric flow.

range over which the mercedes pattern remains stable is muchlarger than the range over which this pattern is obtained
via evolution from the perturbed conductive state. The sameis true for the three-roll and four-roll states. We have not
ascertained the stability range for the pizza pattern. However, a large increase ofRa above15000 leads to a transition to
a two-roll state and, interestingly, forRa ≈ 14000, to an axisymmetric state consisting of one toroidal roll. This toroidal
state remains stable over a very large Rayleigh-number range.

CONCLUSION

We have successfully simulated numerically all of the steady patterns obtained experimentally by Hof. For the same
Rayleigh number (Ra = 14200) we observed five stable steady solutions: a toroidal roll; two, three and four parallel
rolls; and a three-spoke (‘mercedes’) pattern. An additional ’pizza’ pattern is observed at lowerRa. Despite the great
variety of flows we have obtained, we are far from an exhaustive study even for this specific configuration of control
parameters. It is very likely that other stable solutions exist which we did not observe because they were topologicallytoo
far from any of our initial conditions. We also found many transitional patterns that should be described in the future.
There is still much work to be done in classifying the patterns and determining their exact stability limits. Our nonlinear
simulations should be refined by a linear analysis, in order to insure that a long-lived pattern is really asymptotically
stable. Finally, we hope to construct a bifurcation diagramdetailing and organizing the various patterns.

Computations were performed on the NEC-SX5 at the IDRIS-CNRS supercomputer center, project 1119.
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