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Summary The experiments of Hof, Mullin and Lucas on Rayleigh-Bér@vection in a cylindrical system are simulated numelgical
using a pseudospectral three-dimensional code. We corifatidr their parameter values, there exist multiple stabletions. Starting
from a perturbed conductive state, we obtain different fpaterns, depending on the Rayleigh number. We then use tlogss to
initialize the simulations for other Rayleigh numbers. histway we obtain many different stable solutions for the sd®ayleigh
number — two, three or four parallel rolls, a three-spokégpatand even an axisymmetric state.

CYLINDRICAL RAYLEIGH-BENARD CONVECTION

The Rayleigh-Bénard instability in a fluid layer heated frbelow and cooled from above is one of the most ancient and
well-known prototypes of pattern formation. When the honital dimensions are comparable to the height of the flugd, th
shape of the container plays a crucial role in determiniegidtterns formed. In a vertical cylinder, the Rayleigh nemb
thresholds for onset of convection from the motionless catide state have been already well described [1]. Secgndar
bifurcations leading to other patterns have been studiedenigally for a few cases [2, 3, 4, 5]. Experiments by tdof
al.[6] produced a large number of convective patterns by irsinggand decreasing the Rayleigh number in a variety of
ways. For example, five different patterns could be obtaatdgls = 14200. Our aim is to reproduce, understand, and
extend these results.

NUMERICAL SIMULATION

In our numerical code [7], the Navier-Stokes equations miegrated by a classical pseudospectral method, where the
velocity and temperature fields are represented using Ghelypolynomials in the radial and vertical directions and
Fourier series in the azimuthal direction. The number ofigwints or modes is 36 in the radial, 80 in the azimuthal
and 18 in the vertical direction. The time-stepping schesnhé Adams-Bashforth formula for the nonlinear term and
Crank-Nicolson formula for the linear term. An influence maimethod was used to impose incompressibility.

Matching the parameters in [6], we set the Prandtl nundbet= viscosity/thermal diffusion to 6.7 (that of water) and

the aspect ratid' = radius/height to 2.0. We have performed a sequence of simulations, varying thialistate and the
Rayleigh number, in order to find the asymptotic state foheamfiguration.

RESULTS

Sudden start from a quasi-conductive state

We initialized the simulations with a perturbed conducteéution satisfying the boundary conditions. Dependinghen
Rayleigh number, this state evolves towards different flowee the left part of the diagram on fig. 2.

For Ra < 1900, the initial perturbation decays to zero, resulting in tbaductive state. FoRa near2000, the final state
is a convective state with symmetf, which we will call the ‘pizza state’ (see fig. 1f). F&a betweer8000 and9000,
the system evolves towards a four-roll state. For Rayleighlmers betweeh0000 and20000, the final solution is always
a three-roll state, whose roll boundaries become thinneémaore curved with increasinga. Finally, for Ra ~ 23000,
the final pattern consists of three radial spokes that werefdr to as the ‘mercedes pattern’.

Evolution from convective states

We now use the convective states described above as indtaksand change the Rayleigh number. The results of the
simulations are represented on fig. 2. For example, we usechéicedes pattern obtained 8¢ = 23000 as an initial
field at Ra = 15000. The resulting final solution was still of mercedes form. they words, the Rayleigh number
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Figure 1. Stable steady flows obtained by the nonlinear simulatiompkzature variation on a horizontal slice at mid-heighthef t
cylinder. Dark areas represent hotter ascending fluid amghtbareas colder descending fluid. For each flow, there alstsean
equivalent form, in which the signs of the temperature YamBand vertical velocity are reversed.
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Figure 2. Schematic diagram of the dependence of the final flow patterRayleigh number and on initial state. A first series of
simulations used a perturbed conductive state as initiaition over a range aRa to obtain the patterns listed in the first column. A
second series used these patterns as initial conditicesingl the value ofRa. For Ra = 14200 we obtain five different final states,
including an axisymmetric flow.

range over which the mercedes pattern remains stable is farggr than the range over which this pattern is obtained
via evolution from the perturbed conductive state. The senteie for the three-roll and four-roll states. We have not
ascertained the stability range for the pizza pattern. Hewe large increase dta abovel 5000 leads to a transition to

a two-roll state and, interestingly, féta ~ 14000, to an axisymmetric state consisting of one toroidal rohisTtoroidal
state remains stable over a very large Rayleigh-numbeerang

CONCLUSION

We have successfully simulated numerically all of the syeaatterns obtained experimentally by Hof. For the same
Rayleigh number Ra = 14200) we observed five stable steady solutions: a toroidal rel, tthree and four parallel
rolls; and a three-spoke (‘mercedes’) pattern. An additidpizza’ pattern is observed at lowéta. Despite the great
variety of flows we have obtained, we are far from an exhaestiudy even for this specific configuration of control
parameters. Itis very likely that other stable solutioristaxhich we did not observe because they were topologitadly
far from any of our initial conditions. We also found manyrisd@ional patterns that should be described in the future.
There is still much work to be done in classifying the patseaind determining their exact stability limits. Our nonéne
simulations should be refined by a linear analysis, in ordénsure that a long-lived pattern is really asymptotically
stable. Finally, we hope to construct a bifurcation diagdstailing and organizing the various patterns.

Computations were performed on the NEC-SX5 at the IDRIS-SISRpercomputer center, project 1119.
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