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Summary A new numerical method for the solution of the homogeneous Boltzmann equation on nonuniform grids is developed. The
collision operator is written using the Fourier transform. This formulation and a special new discretization of the gain part allow for
the fast numerical computations on nonuniform grids in velocity space. The results of a numerical test are presented.

We consider the classical Boltzmann equation in a homogeneous case

∂f

∂t
= Q+(f, f)(v)− fq−(f)(v),

wheref := f(t,v) andf : R+ × R3 → R+. The collision operator, which decomposes into the gainQ+(f, f)(v) and
the lossfq−(f)(v) parts, is reformulated using the Fourier transform as follows

Q+(f, f)(v) = F−1
l (v)F−1

m (v)
[
f̂lf̂mB̂R(l,m)

]
, q−(f)(v) = F−1

m (v)
[
f̂mB̂R(m,m)

]
,

wheref̂m is the Fourier transform of the functionf , the inverse Fourier transform to the velocity variablev is denoted
by F−1

m (v) andB̂R(l,m) =
∫
B(0,R)

∫
S2 B(|u|, θ)e2πı( l+m

2 ,u)e2πı|u|(m−l
2 ,ω) dωdu denotes the regularized transform of

the collision kernelB(|u|, θ). Here we assume an arbitrary model of collision interaction. The distribution functionf is
usually negligibly small outside some ball. Thus for the numerical treatment of the Boltzmann equation we assume that
v ∈ Ω, whereΩ is the bounded velocity domain.
One of the main problems with efficient computations of the Boltzmann equation is that the deterministic methods use
the fixed discretization in the velocity domain. Hence a huge number of discretization points is required to get the desired
accuracy. We overcome this problem introducing a nonuniform gridΩv ⊂ Ω. The discrete points of the grid are chosen in
such a way that the jump of the function value between the neighbouring points is lower than some prescribed threshold.
In order to treat the discountinuous functions we impose additional condition that the neighbouring points should not be
closer than some given number. Thus we have much more discrete points in the grid where the function changes rapidly
than in the regions where the function is almost constant. Moreover this nonuniform grid is changed adaptively at each
time step to follow the changes of the distribution functionf .
Figure 1 shows a sample discontinuous initial condition function used in the numerical tests. Points on the graphs denote
the nodes of the nonuniform grid. One can observe the irregular distribution of the grid points – more points are chosen
in the regions where the gradient of the function is larger.
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Figure 1. Initial condition function on nonuniform grid: 2D view from the top (left) and the side view (right).

To evaluate numerically the Fourier transform̂fm =
∫
Ω

f(v)e2πı(v,m) dv we approximate the functionf on the gridΩv

by a piecewise constant function̄fK with K being the cell of the grid. This gives the formulâfm = Cm

∑
j f̄j e2πı(vj ,m),



wheref̄j is a value of the function̄fK in a discrete pointvj ∈ Ωv andCm is a constant. To compute this trigonometric
sum we use the Unequally Spaced Fast Fourier Transform (USFFT) algorithm developed by Beylkin [1]. It is a variant of
the standard Fast Fourier Transform especially suitable for nonuniform grids. The computational cost of this algorithm is
O(Nv) + O(M3 log M), whereNv is the number of discrete velocity points andM denotes the number of modes in the
Fourier domain in one direction.
The collision operator is splitted into two parts, thus we discretize independetly the gain and the loss parts to get

Q+(f, f)(v) =
M−1∑

l,m=−M

f̂lf̂mB̂(l,m)e−2πı(l+m,v), q−(f)(v) =
M−1∑

m=−M

f̂mB̂(m,m)e−2πı(m,v).

To compute the loss part we apply straightforwardly the USFFT algorithm. To efficiently evaluate the gain part we
separate variablesl andm in the kernelB̂(l,m) using the eigenvalue decomposition. Then we approximate the kernel
using only the significant eigenvalues. This greatly reduces the computational effort – due to the special properties of the
kernel the number of significant eigenvalues is relatively small. Hence we get the following approximation to the gain
term

Q+(f, f)(v) =
σ∑

p=1

dr

[
M−1∑

m=−M

f̂mUr(m)e−2πı(m,v)

]2

,

which can be easily evaluated using USFFT algorithm. Hereσ is the number of significant eigenvalues of the kernel
matrix, which is typically1

8 to 1
4 of the total number for the Maxwellian gas and hard spheres models, andUr is the

eigenvector corresponding to the eigenvaluedr.
The total computational cost of the numerical approximation of the collision operator is O(Nv) + O(σM6 log M).

To justify the method we perform a number of numerical computations. Below we present the result of a sample test –
the relaxation problem. We take the sum of two ”half”-Maxwellians as the initial function (see Figure 1). Figure 2 shows
the 1D cut of the initial function (dashed line) and the relaxed numerical solution (continuous line).
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Figure 2. Relaxation problem; 1D cut atvy = 0, vz = 0.
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