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POLOIDAL-TOROIDAL DECOMPOSITION IN CYLINDRICAL VON KÁRMÁ N FLOW

Piotr Boronski, Laurette Tuckerman
LIMSI (CNRS-UPR 3251), Department of Mechanics, BP 133 91403 Orsay, France

Summary The goal of the VKS experiment is to observe a laboratory-scale dynamo effectin the cylindrical von Kármán flow. Because
there exists at present no complete numerical treatment of this configuration, we have developed an efficient three-dimensional pseudo-
spectral code capable of solving the Navier-Stokes equations in a finite cylindrical geometry, to be coupled with the Maxwell equations.
A poloidal-toroidal decomposition insures that fields are divergence-free by construction which is very important for applications to
the magnetohydrodynamic case. The cylindrical domain is treated by using in the radial direction a polynomial basis which is regular
at the domain axis. The satisfaction of high-order and/or coupled boundary conditions is guaranteed by theinfluence matrixmethod.
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Figure 1. The simu-
lated configuration. The
counter-rotating discs
generate two main flow
structures - toroidal and
poloidal.

The dynamo effectis thought to be responsable for planetary and solar magnetic field. The
VKS (von Kármán Sodium) experiment [1] aims to reproduce this effect at laboratory scales.
Our goal is to develop a fully three-dimensional magnetohydrodynamic code capable of nu-
merically simulating this experiment. Two features make this a particularly challenging task: a
cylindrical geometry is used in conformity with the experiment, and the velocity and magnetic
fields are constructed so as to be exactly divergence-free. Although three-dimensional coupled
magnetohydrodynamic codes have been written in spherical geometries, to our knowledge,
there exist no such codes in a cylindrical geometry of finite height.
A secondary motivation is to study the advantages and drawbacks of a pseudo-spectral method
based on potentials of the velocity and magnetic fields, as well as to understand the importance
of the regularity condition at the axis in a cylindrical geometry.

MAIN ASSUMPTIONS

The configuration simulated consists of a conducting fluid enclosed in a cylinder of radiusR
and heighth whose upper and bottom bases rotate in opposite directions with angular velocity
Ω (fig. 1), generating the von Kármán swirling flow. This flow is considered to be a good
candidate for a self-sustained dynamo [1]. The system is described by the Navier-Stokes and
Maxwell equations coupled by induction and the magnetic tension and pressure.

∂tu + (u · ∇)u + 1
ρµ

(B · ∇)B = −
1
ρ
∇
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p+ 1
2µ
B2

)

+ ν∇2
u (1a)

∂tB = ∇ × (u × B) + 1
ρµ

∇
2
B (1b)

∇ · u = ∇ · B = 0 (1c)

whereu andB are the velocity and magnetic fields. No-slip boundary conditions are imposed onu while continuity
with a surrounding insulating region is to be imosed onB. Both the velocityu and the magnetic fieldB are required
to be solenoidal; forB this is especially crucial [2]. For this reason, we represent u andB by thepoloidal-toroidal
decomposition given by:

u (r, θ, z) = ∇ × (ψêz) + ∇ × ∇ × (ϕêz) (2)

whereψ andϕ are scalar potentials. To simplify the description, we consider only the hydrodynamic equations (1a); the
numerical scheme is applied in an analogous way to the magnetic part (1b). Substituting (2) for the velocity fieldu in
(1a), we derive equations forψ andϕ by taking thêez component of the curl and double curl of (1a), resulting in:

(∂t − ν∆)∆hψ = êz · (∇ × b) (3a)

(∂t − ν∆)∆∆hϕ = êz · (∇ × ∇ × b) (3b)

whereb contains all nonlinear terms resulting from (1a). As for boundary conditions, the potentialsψ andϕ cannot be
completely decoupled and in the no-slip case give:

ur : 1
r
∂θψ + ∂2

rzϕ = 0

{

r=R

z=±h
(4a)

uθ : ∂rψ −
1
r
∂2

θzϕ =

{

0 r=R

±rΩ(r) z=±h
(4b)

uz : ∆hϕ = 0 r=R (4c)

Additional conditions must be imposed on the sixth-order PDE system (3). Some of these are gauge conditions, whose
purpose is to select among the potentialsψ andϕ which yield the sameu. Others are due to the necessity to make the



differentiation leading to (3) reversible; these generalized integration constants insure that (3) leads to the same solution
as (1a). The general form of these conditions was given in [3]and in our case gives

ϕ = 0 z=±h (5a)

r∂rz∆hψ − ∂θ∆∆hϕ = 0 r=R (5b)

NUMERICAL APPROACH

Axis condition
In a cylindrical geometry, theaxis conditionexpresses the requirement that functions be continuous andinfinitely dif-
ferentiable at the axis. If a Fourier representation is usedin the angular direction, this condition links the Fourier mode
number with the degree and parity of the polynomial used in the radial direction (6) (as in the case of cylindrical Bessel
functions):

f (r, θ, z) =
∑

k=0...K
m=−M...M

n=|m|...N (m+n even)

f∗
m,n,k e

imθrnzk (6)

We choose a orthogonal basis of radial polynomials [4] satisfying the regularity condition at the cylinder axis. The poly-
nomials are solutions of a Sturm-Liouville equation and arerelated to the shifted Jacobi polynomials. Taking into account
the symmetry and degree relation significantly reduces the numerical cost of the algorithm, and more importantly, en-
forces the correct balance between the representable radial and azimuthal variation of the flow near the axis. This uniform
scaling is achieved because, for each Fourier mode number, the associated radial polynomials decay sufficiently fast at
the origin (fig. 2). The difference between a regularized anda non-regularized treatment is schematically demonstrated
on figure 3.
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Figure 2. The radial polynomials [4]. The first four poly-
nomials for the different Fourier modesm = 0 . . . 3 have
been plotted. The polynomials associated with Fourier
wave numberm contain powersm, m + 2, . . . , N of r.

Figure 3. The visual interpretation of a pole singularity. The wavy lines repre-

sents schematically the profile ofeimθP (r). a) A singular case:P (r) ≈ O(1) ;

δ1 ≈ δ2 ≈ δ3. The peaks near to the origin are much steeper than those nearthe

boundary. b) A regularized case:P (r) = O(rm) (herem ≥ 6) ; δ0 < δ1 < δ2 < δ3.

The peaks near the origin are of similar steepness to those near to the boundary.

Imposing the boundary condition
In order to satisfy the more complicated or coupled boundaryconditions, we use the influence matrix technique. The main
idea is to decompose the solution into particular and homogenous contributions. Simple decoupled boundary conditions
are substituted for the actual conditions (4, 5) at each of these steps. The influence matrix measures the “influence” of each
of the simplified boundary conditions on the quantities (4, 5) which are required to be zero for the final solution. Once
the particular solution is calculated, the influence matrixis inverted to determine the coefficients of the Greens functions
whose superposition is the required homogeneous contribution.
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