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Summary The goal of the VKS experiment is to observe a laboratoryestygnamo effedn the cylindrical von Karman flow. Because
there exists at present no complete numerical treatmehtsofonfiguration, we have developed an efficient three-dgiomal pseudo-
spectral code capable of solving the Navier-Stokes equativa finite cylindrical geometry, to be coupled with the M&X equations.
A poloidal-toroidal decomposition insures that fields are divergence-free bgtoaction which is very important for applications to
the magnetohydrodynamic case. The cylindrical domairestéd by using in the radial direction a polynomial basisciwtié regular
at the domain axis. The satisfaction of high-order and/optad boundary conditions is guaranteed byitfilence matrixmethod.

MOTIVATION

The dynamo effecis thought to be responsable for planetary and solar magfielil. The

VKS (von Karman Sodium) experiment [1] aims to reproducs #ffect at laboratory scales. +Q

Our goal is to develop a fully three-dimensional magnetobgignamic code capable of nu- — ==
merically simulating this experiment. Two features maks ¢éhparticularly challenging task: a

cylindrical geometry is used in conformity with the expeeint, and the velocity and magnetic
fields are constructed so as to be exactly divergence-figeoudgh three-dimensional coupled CD
magnetohydrodynamic codes have been written in spheramingtries, to our knowledge,s /

poloidal

there exist no such codes in a cylindrical geometry of finéight. 2 :
A secondary motivation is to study the advantages and drelvstz a pseudo-spectral methoqi \®
based on potentials of the velocity and magnetic fields, disas¢o understand the |mportanceg _______________________
of the regularity condition at the axis in a cylindrical gestny. D

MAIN ASSUMPTIONS
Figure 1. The simu-

lated configuration. The

The configuration simulated consists of a conducting fluidesed in a cylinder of radiug g
iscs

and height: whose upper and bottom bases rotate in opposite directishsngular velocity counter-rotating
Q (fig. 1), generating the von Karman swirling flow. This flow isnsidered to be a gooddenerate two main  flow
candidate for a self-sustained dynamo [1]. The system isritesi by the Navier-Stokes andftructures -toroidal and

Maxwell equations coupled by induction and the magnetisitenand pressure. poloidal
du+(u-Vyu+L (B-V)B = —1V(p+ LB) +rViu (1a)
B = Vx(uxB)+-V'B (1b)
V.u = V.B=0 (1c)

whereu and B are the velocity and magnetic fields. No-slip boundary ctiowls are imposed on while continuity
with a surrounding insulating region is to be imosedB®n Both the velocityu and the magnetic fiel# are required
to be solenoidal; foB this is especially crucial [2]. For this reason, we représeand B by the poloidal-toroidal
decomposition given by:

u(r,6,2z) =V x (¥&,) + V x V x (p&,) (2)

wherey andy are scalar potentials. To simplify the description, we dad&rsonly the hydrodynamic equations (1a); the
numerical scheme is applied in an analogous way to the miagreat (1b). Substituting (2) for the velocity field in
(1a), we derive equations fgrandp by taking theg, component of the curl and double curl of (1a), resulting in:

(0 —vA) Ay = &,-(V xb) (3a)
(0, —vA)ADpp = &,-(V xV xb) (3b)

whereb contains all nonlinear terms resulting from (1a). As for bdary conditions, the potentialsandy cannot be
completely decoupled and in the no-slip case give:
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Additional conditions must be imposed on the sixth-ordeERYstem (3). Some of these are gauge conditions, whose
purpose is to select among the potentialand ¢ which yield the same. Others are due to the necessity to make the



differentiation leading to (3) reversible; these generdiintegration constants insure that (3) leads to the satagan
as (1a). The general form of these conditions was given iaf@]in our case gives

p = 0 z==h (Sa)
T@,-ZA}L’L/) — agAAh(p r=R (5b)

NUMERICAL APPROACH

Axis condition
In a cylindrical geometry, thaxis conditionexpresses the requirement that functions be continuouinéindely dif-
ferentiable at the axis. If a Fourier representation is uisede angular direction, this condition links the Fourienae
number with the degree and parity of the polynomial used ér#dial direction (6) (as in the case of cylindrical Bessel
functions):
f(r0,z) = Z f:;z,n.,k ook (6)
k:O,,,KM

m=—M...
n=|m/|...N (m+n even)

We choose a orthogonal basis of radial polynomials [4] Séitig the regularity condition at the cylinder axis. Theypol
nomials are solutions of a Sturm-Liouville equation andratated to the shifted Jacobi polynomials. Taking into acdto
the symmetry and degree relation significantly reduces tmemical cost of the algorithm, and more importantly, en-
forces the correct balance between the representabléaadiazimuthal variation of the flow near the axis. This unifo
scaling is achieved because, for each Fourier mode nunfiteegasisociated radial polynomials decay sufficiently fast at
the origin (fig. 2). The difference between a regularized amibn-regularized treatment is schematically demonstrate
on figure 3.
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Figure 2. The radial polynomials [4]. The first four polyr Figure 3. The visual interpretation of a pole singularity. The wavye repre-
nomials for the different Fourier modes = 0... 3 have | sents schematically the profile ef™® P(r). a) A singular case:P(r) ~ O(1) ;
been plotted. The polynomials associated with Foufiei ~ &, = &3. The peaks near to the origin are much steeper than thoseheear
wave numbern contain powersn, m + 2, ..., N of r. | boundary. b) Aregularized cas®(r) = O(r™) (herem > 6); o < 61 < J2 < J3.
The peaks near the origin are of similar steepness to th@sdméhe boundary.

Imposing the boundary condition

In order to satisfy the more complicated or coupled boundangitions, we use the influence matrix technique. The main
idea is to decompose the solution into particular and homoge contributions. Simple decoupled boundary conditions
are substituted for the actual conditions (4, 5) at eachesfdlsteps. The influence matrix measures the “influence’tbf ea
of the simplified boundary conditions on the quantities (Awhich are required to be zero for the final solution. Once
the particular solution is calculated, the influence matrixverted to determine the coefficients of the Greens fanst
whose superposition is the required homogeneous corntribut
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